Theorem1 \textbf{Theorem1} Theorem1
0 ⩽ r a n k ( A m , n ) = def max d e t ( A k ) ≠ 0 { k } = dim I m ( A : V F n → U F m ) = dim s p a n ( A ) = r a n k r ( A ) = r a n k c ( A ) ⩽ min { m , n } { \begin{aligned} 0&\leqslant \mathrm{rank}(A_{m,n})\xlongequal{\text{def}}\max_{\mathrm{det}(A_k)\ne 0}\{k\} \\&=\dim\mathrm{Im}(\mathscr{A}:V_{\mathbb{F}}^n \to U_{\mathbb{F}}^m) =\dim\mathrm{span}(A) \\&=\mathrm{rank}_r(A)=\mathrm{rank}_c(A) \\&\leqslant \min\{m,n\} \end{aligned} } 0⩽rank(Am,n)defdet(Ak)=0max{k}=dimIm(A:VFn→UFm)=dimspan(A)=rankr(A)=rankc(A)⩽min{m,n}
Theorem2 \textbf{Theorem2} Theorem2
r a n k ( A m n ) = c ∈ R \ { 0 } r a n k ( c A ) = r a n k ( A T ) = r a n k ( A A T ) = r a n k ( A T A ) = r a n k ( P ) = m r a n k ( P s m A m n ) = r a n k ( Q ) = n r a n k ( A m n Q n t ) = r a n k ( A , A B ) = r a n k ( A C A ) \begin{align*} \mathrm{rank}(A_{mn}) &\xlongequal{c\in\R\backslash\{0\}}\mathrm{rank}(cA)=\mathrm{rank}(A^\mathrm{T})=\mathrm{rank}(AA^\mathrm{T})=\mathrm{rank}(A^\mathrm{T}A) \\&\xlongequal{\mathrm{rank}(P)=m}\mathrm{rank}(P_{sm}A_{mn})\xlongequal{\mathrm{rank}(Q)=n}\mathrm{rank}(A_{mn}Q_{nt}) \\&=\mathrm{rank}(A,{AB})=\mathrm{rank}\left(\begin{matrix} A\\ CA\\ \end{matrix} \right) \end{align*} rank(Amn)c∈R\{0}rank(cA)=rank(AT)=rank(AAT)=rank(ATA)rank(P)=mrank(PsmAmn)rank(Q)=nrank(AmnQnt)=rank(A,AB)=rank(ACA)
Thm2.1 Proof: \color{blue}\textbf{Thm2.1 Proof:} Thm2.1 Proof:
由于
A x = 0 ⇒ A T A x = 0 ⇒ x T A T A x = ( A x ) T ( A x ) = 0 ⇒ A x = 0 \begin{align*} Ax=0 \Rightarrow A^{\mathrm{T}}Ax=0 \Rightarrow x^{\mathrm{T}}A^{\mathrm{T}}Ax=(Ax)^{\mathrm{T}}(Ax)=0\Rightarrow Ax=0 \end{align*} Ax=0⇒ATAx=0⇒xTATAx=(Ax)T(Ax)=0⇒Ax=0
故齐次方程组 A x = 0 Ax=0 Ax=0 与 A T A x = 0 A^{\mathrm{T}}Ax=0 ATAx=0 同解,于是 A A A 与 A T A A^{\mathrm{T}}A ATA 等秩;同理可证, A T x = 0 A^{\mathrm{T}}x=0 ATx=0 与 A A T x = 0 AA^{\mathrm{T}}x=0 AATx=0 同解,故 A T A^{\mathrm{T}} AT 与 A A T AA^{\mathrm{T}} AAT 等秩;矩阵 c A ( c ≠ 0 ) , A T cA(c\ne 0),A^{\mathrm{T}} cA(c=0),AT 与 A A A 的最高阶子式相同,由秩定义可知三者等秩;综上所述,矩阵 A , c A ( c ≠ 0 ) , A T , A A T , A T A A,cA(c\ne 0),A^{\mathrm{T}},AA^{\mathrm{T}},A^{\mathrm{T}}A A,cA(c=0),AT,AAT,ATA 皆等秩.
Thm2.3 Proof: \color{blue}\textbf{Thm2.3 Proof:} Thm2.3 Proof:
详见 Corollary7
Thm2.3 Proof: \color{blue}\textbf{Thm2.3 Proof:} Thm2.3 Proof:
设 A = ( { α i } i = 1 n ) m × n , B = ( b i j ) n × s A=(\{\alpha_i\}_{i=1}^n)_{m\times n},B=(b_{ij})_{n\times s} A=({αi}i=1n)m×n,B=(bij)n×s,则
( A , A B ) = ( α 1 , ⋯ , α n ; ( α 1 , ⋯ , α n ) ( b 11 ⋯ b 1 s ⋮ ⋱ ⋮ b n 1 ⋯ b n s ) ) = ( α 1 , ⋯ , α n ; γ 1 , ⋯ , γ s ) \begin{align*} (A,AB)&=(\alpha_1,\cdots,\alpha_n;\ (\alpha_1,\cdots,\alpha_n)\left( \begin{matrix} b_{11}& \cdots& b_{1s}\\ \vdots& \ddots& \vdots\\ b_{n1}& \cdots& b_{ns}\\ \end{matrix} \right))\\&=(\alpha_1,\cdots,\alpha_n;\ \gamma_1,\cdots,\gamma_s) \end{align*} (A,AB)=(α1,⋯,αn; (α1,⋯,αn) b11⋮bn1⋯⋱⋯b1s⋮bns )=(α1,⋯,αn; γ1,⋯,γs)
所以向量组 { γ j } j = 1 s \{\gamma_j\}_{j=1}^s {γj}j=1s 可由 { α i } i = 1 n \{\alpha_i\}_{i=1}^n {αi}i=1n 线性表示,于是
( A , A B ) = ( α 1 , ⋯ , α n ; γ 1 , ⋯ , γ s ) → c ( α 1 , ⋯ , α n ; 0 , ⋯ , 0 ) (A,AB)=(\alpha_1,\cdots,\alpha_n;\gamma_1,\cdots,\gamma_s)\xrightarrow{c}(\alpha_1,\cdots,\alpha_n;0,\cdots,0) (A,AB)=(α1,⋯,αn;γ1,⋯,γs)c(α1,⋯,αn;0,⋯,0)
从而
r a n k ( A , A B ) = r a n k ( α 1 , ⋯ , α n ; 0 , ⋯ , 0 ) = r a n k ( A ) \mathrm{rank}(A,AB)=\mathrm{rank}(\alpha_1,\cdots,\alpha_n;0,\cdots,0)=\mathrm{rank}(A) rank(A,AB)=rank(α1,⋯,αn;0,⋯,0)=rank(A)
余下同理可证.
Theorem3 \textbf{Theorem3} Theorem3
r a n k ( A ∗ ) = { n , r a n k ( A ) = n 1 , r a n k ( A ) = n − 1 0 , r a n k ( A ) < n − 1 { \mathrm{rank}(A^*)= \left\{ \begin{array}{l} n \ , \ \mathrm{rank}(A) = n\\ 1 \ , \ \mathrm{rank}(A) = n-1\\ 0 \ , \ \mathrm{rank}(A) < n-1\\ \end{array} \right. } rank(A∗)=⎩ ⎨ ⎧n , rank(A)=n1 , rank(A)=n−10 , rank(A)<n−1
Thm3 Proof: \color{blue}\textbf{Thm3 Proof:} Thm3 Proof:
由秩定义
{ r a n k ( A ) = k ⇔ ∃ ∣ A k ∣ ≠ 0 ∧ ∀ ∣ A k + 1 ∣ = 0 r a n k ( A ) ⩾ k ⇔ ∃ ∣ A k ∣ ≠ 0 r a n k ( A ) < k ⇔ ∀ ∣ A k ∣ = 0 \left\{ \begin{array}{l} \mathrm{rank}(A) = k \Leftrightarrow \exist |A_k|\ne 0\land \forall |A_{k+1}|=0\\ \mathrm{rank}(A) \geqslant k \Leftrightarrow \exist |A_k|\ne 0\\ \mathrm{rank}(A) < k \Leftrightarrow \forall |A_k|=0\\ \end{array} \right. ⎩ ⎨ ⎧rank(A)=k⇔∃∣Ak∣=0∧∀∣Ak+1∣=0rank(A)⩾k⇔∃∣Ak∣=0rank(A)<k⇔∀∣Ak∣=0
(1) 当 r a n k ( A ) = n \mathrm{rank}(A)=n rank(A)=n 时,有 ∣ A ∣ ≠ 0 |A|\ne0 ∣A∣=0,故 ∣ A ∗ ∣ = ∣ ∣ A ∣ A − 1 ∣ = ∣ A ∣ n − 1 ≠ 0 |A^*|=||A|A^{-1}|=|A|^{n-1}\ne 0 ∣A∗∣=∣∣A∣A−1∣=∣A∣n−1=0,于是有 r a n k ( A ∗ ) = n \mathrm{rank}(A^*)=n rank(A∗)=n;
(2) 当 r a n k ( A ) = n − 1 \mathrm{rank}(A)=n-1 rank(A)=n−1 时,存在 n − 1 n-1 n−1 阶子式不为零,则 A ∗ ≠ O ⇒ r a n k ( A ∗ ) > 0 A^*\ne O\Rightarrow\mathrm{rank}(A^*)> 0 A∗=O⇒rank(A∗)>0,又 A ∗ A = ∣ A ∣ I = O A^*A=|A|I=O A∗A=∣A∣I=O,故由 Corollary7 有 r a n k ( A ∗ ) + r a n k ( A ) ⩽ n \mathrm{rank}(A^*)+\mathrm{rank}(A)\leqslant n rank(A∗)+rank(A)⩽n,于是 1 ⩽ r a n k ( A ∗ ) ⩽ n − r a n k ( A ) = n − ( n − 1 ) = 1 1\leqslant \mathrm{rank}(A^*)\leqslant n-\mathrm{rank}(A)=n-(n-1)=1 1⩽rank(A∗)⩽n−rank(A)=n−(n−1)=1,从而 r a n k ( A ∗ ) = 1 \mathrm{rank}(A^*)=1 rank(A∗)=1;
(3) 当 r a n k ( A ) < n − 1 \mathrm{rank}(A)
Theorem4 \textbf{Theorem4} Theorem4
从一个矩阵中抽取某行、列交叉处元素构成新矩阵称为该原矩阵的子矩阵,其秩不超过原矩阵,即
r a n k ( SubMatrix ) ⩽ r a n k ( Matrix ) \mathrm{rank}(\text{SubMatrix}) \leqslant \mathrm{rank}(\text{Matrix}) rank(SubMatrix)⩽rank(Matrix)
Thm4 Proof: \color{blue}\textbf{Thm4 Proof:} Thm4 Proof:
设子矩阵 r a n k ( M ′ ) = r ′ \mathrm{rank}(M')=r' rank(M′)=r′,则其存在非零 r ′ r' r′ 阶子式,即 ∃ det ( M r ′ ′ ) ≠ 0 \exists \det(M'_{r'})\ne 0 ∃det(Mr′′)=0,且 r ′ r' r′ 阶子式对应矩阵 M r ′ ′ M'_{r'} Mr′′ 亦为原矩阵 M M M 的子矩阵,所以原矩阵 M M M 中 ∃ r ⩾ r ′ , s . t . det ( M r ) ≠ 0 \exists r\geqslant r', \mathrm{s.t.} \det(M_{r})\ne 0 ∃r⩾r′,s.t.det(Mr)=0,于是有 r a n k ( M ) = r ⩾ r ′ = r a n k ( M ′ ) \mathrm{rank(M)}=r\geqslant r'=\mathrm{rank(M')} rank(M)=r⩾r′=rank(M′).
Theorem5 \textbf{Theorem5} Theorem5 矩阵降阶公式
设分块矩阵 M = ( A m B C D n ) M=\left(\begin{matrix} A_m& B\\ C& D_n\\ \end{matrix}\right) M=(AmCBDn)
若 A A A 为非奇异矩阵,则
r a n k ( M ) = r a n k ( A ) + r a n k ( D − C A − 1 B ) \mathrm{rank}(M)=\mathrm{rank}(A)+\mathrm{rank}(D-CA^{-1}B) rank(M)=rank(A)+rank(D−CA−1B)若 D D D 为非奇异矩阵,则
r a n k ( M ) = r a n k ( D ) + r a n k ( A − B D − 1 C ) \mathrm{rank}(M)=\mathrm{rank}(D)+\mathrm{rank}(A-BD^{-1}C) rank(M)=rank(D)+rank(A−BD−1C)若 A , D A,D A,D 皆为非奇异矩阵,则
r a n k ( A ) + r a n k ( D − C A − 1 B ) = r a n k ( D ) + r a n k ( A − B D − 1 C ) \mathrm{rank}(A)+\mathrm{rank}(D-CA^{-1}B)=\mathrm{rank}(D)+\mathrm{rank}(A-BD^{-1}C) rank(A)+rank(D−CA−1B)=rank(D)+rank(A−BD−1C)
Thm5 Proof: \color{blue}\textbf{Thm5 Proof:} Thm5 Proof:
初等变换
( A B C D ) → r 2 − C A − 1 ⋅ r 1 ( A B O D − C A − 1 B ) \left( \begin{matrix} A& B\\ C& D\\ \end{matrix} \right) \xrightarrow{r_2-CA^{-1}\cdot\ r_1}\left( \begin{matrix} A& B\\ O& D-CA^{-1}B\\ \end{matrix} \right) (ACBD)r2−CA−1⋅ r1(AOBD−CA−1B)
则
r a n k ( M ) = r a n k ( A ) + r a n k ( D − C A − 1 B ) \mathrm{rank}(M)=\mathrm{rank}(A)+\mathrm{rank}(D-CA^{-1}B) rank(M)=rank(A)+rank(D−CA−1B)
余下同理可证.
Theorem6 \textbf{Theorem6} Theorem6
max { r a n k ( A ) , r a n k ( B ) } r a n k ( A ± B ) ⩽ r a n k ( A , B ) r a n k ( A B ) ⩽ r a n k ( A ) + r a n k ( B ) = r a n k ( A O O B ) ⩽ r a n k ( A C O B ) ⩽ r a n k ( A ) + r a n k ( B ) + r a n k ( C ) { \begin{aligned} \begin{array}{c} \max\{\mathrm{rank}(A),\mathrm{rank}(B)\}\\ \mathrm{rank}(A\pm B)\\ \end{array} &\leqslant \begin{array}{c} \mathrm{rank}(A,B)\\ \mathrm{rank}\left(\begin{matrix} A\\ B\\ \end{matrix} \right)\\ \end{array} \\&\leqslant \mathrm{rank}(A)+\mathrm{rank}(B) \\&=\mathrm{rank}\left( \begin{matrix} A& O\\ O& B\\ \end{matrix} \right) \\&\leqslant \mathrm{rank}\left( \begin{matrix} A& C\\ O& B\\ \end{matrix} \right) \\&\leqslant\mathrm{rank}(A)+\mathrm{rank}(B)+\mathrm{rank}(C) \end{aligned} } max{rank(A),rank(B)}rank(A±B)⩽rank(A,B)rank(AB)⩽rank(A)+rank(B)=rank(AOOB)⩽rank(AOCB)⩽rank(A)+rank(B)+rank(C)
Corollary6 \textbf{Corollary6} Corollary6
r a n k ( A ) − r a n k ( B ) ⩽ r a n k ( A − B ) {\mathrm{rank}(A)-\mathrm{rank}(B)\leqslant \mathrm{rank}(A-B)} rank(A)−rank(B)⩽rank(A−B)
r a n k ( A n B n − I n ) ⩽ r a n k ( A − I ) + r a n k ( B − I ) \mathrm{rank}(A_nB_n-I_n)\leqslant \mathrm{rank}(A-I)+\mathrm{rank}(B-I) rank(AnBn−In)⩽rank(A−I)+rank(B−I)
Lemma6 \color{brown}\textbf{Lemma6} Lemma6
设向量组 { α i } i = 1 s \{\alpha_i\}_{i=1}^{s} {αi}i=1s 可由 { β j } j = 1 t \{\beta_j\}_{j=1}^{t} {βj}j=1t 线性表示,
(1) 若 s > t s>t s>t,则 { α i } i = 1 s \{\alpha_i\}_{i=1}^{s} {αi}i=1s 线性相关;(2) 若 { α i } i = 1 s \{\alpha_i\}_{i=1}^{s} {αi}i=1s 线性无关,则 s ⩽ t s\leqslant t s⩽t;
r a n k ( { α i } ) ⩽ r a n k ( { β j } ) \mathrm{rank}( \{\alpha_i\}) \leqslant \mathrm{rank}( \{\beta_j\}) rank({αi})⩽rank({βj}).
Lemma6.1 Proof: \color{blue}\textbf{Lemma6.1 Proof:} Lemma6.1 Proof:
(1) { α i } i = 1 s \{\alpha_i\}_{i=1}^{s} {αi}i=1s 可由 { β j } j = 1 t \{\beta_j\}_{j=1}^{t} {βj}j=1t线性表示,则有
r a n k ( α 1 , α 2 , ⋯ , α s ) = r a n k ( ( β 1 , ⋯ , β t ) [ b 11 ⋯ b 1 s ⋮ ⋱ ⋮ b t 1 ⋯ b t s ] ) ⩽ min { t , s } ⩽ t < s \begin{aligned} \mathrm{rank}\left( \alpha _1,\alpha _2,\cdots ,\alpha _s \right) &=\mathrm{rank}(\ \left( \beta _1,\cdots ,\beta _t \right) \left[ \begin{matrix} b_{11}& \cdots& b_{1s}\\ \vdots& \ddots& \vdots\\ b_{t1}& \cdots& b_{ts}\\ \end{matrix} \right] ) \\&\leqslant \min \left\{ t,s \right\} \leqslant trank(α1,α2,⋯,αs)=rank( (β1,⋯,βt) b11⋮bt1⋯⋱⋯b1s⋮bts )⩽min{t,s}⩽t<s
故向量组 { α i } i = 1 s \{\alpha_i\}_{i=1}^{s} {αi}i=1s 线性相关.
(2) 将 (1) 取逆否命题.
Lemma6.2 Proof1: \color{blue}\textbf{Lemma6.2 Proof1:} Lemma6.2 Proof1:分别取两组向量组的极大无关组 { α i 1 , ⋯ , α i n } ⊆ { α i } i = 1 s , { β j 1 , ⋯ , β j m } ⊆ { β j } j = 1 t \{\alpha_{i_{_1}},\cdots,\alpha_{i_{_n}}\}\subseteq\{\alpha_i\}_{i=1}^s\ ,\ \{\beta_{j_{_1}},\cdots,\beta_{j_{_m}}\}\subseteq\{\beta_j\}_{j=1}^t {αi1,⋯,αin}⊆{αi}i=1s , {βj1,⋯,βjm}⊆{βj}j=1t
则前者可由后者线性表示,由 Lemma6.1 可知
n ⩽ m ⇒ r a n k ( { α i } i = 1 s ) ⩽ r a n k ( { β j } j = 1 t ) n\leqslant m\Rightarrow\mathrm{rank}( \{\alpha_i\}_{i=1}^{s} ) \leqslant \mathrm{rank}( \{\beta_j\}_{j=1}^{t} ) n⩽m⇒rank({αi}i=1s)⩽rank({βj}j=1t)Lemma6.2 Proof2: \color{blue}\textbf{Lemma6.2 Proof2:} Lemma6.2 Proof2:
记 ( { α i } i = 1 s ) = A n s , ( { β j } j = 1 t ) = B n t \ (\{\alpha_i\}_{i=1}^s)=A_{ns} , \ (\{\beta_j\}_{j=1}^t)=B_{nt} ({αi}i=1s)=Ans, ({βj}j=1t)=Bnt,则
∃ C ∈ M t , s ( F ) , s . t . A n s = B n t C t s \exist C\in M_{t,s}(\mathbb{F}),\ \mathrm{s.t.}A_{ns}=B_{nt}C_{ts} ∃C∈Mt,s(F), s.t.Ans=BntCts
故由 Theorem7 有
r a n k ( A ) = r a n k ( B C ) ⩽ min { r a n k ( B ) , r a n k ( C ) } ⩽ r a n k ( B ) \mathrm{rank}(A)=\mathrm{rank}(BC)\leqslant \min\{\mathrm{rank}(B),\mathrm{rank}(C)\}\leqslant \mathrm{rank}(B) rank(A)=rank(BC)⩽min{rank(B),rank(C)}⩽rank(B)
Thm6.1.1 Proof: \color{blue}\textbf{Thm6.1.1 Proof:} Thm6.1.1 Proof:
矩阵 A , B A,B A,B 为 ( A , B ) , ( A B ) (A,B),\left(\begin{matrix} A\\B\\ \end{matrix} \right) (A,B),(AB) 的子阵,故由 Theorem4 可知
max { r a n k ( A ) , r a n k ( B ) } ⩽ r a n k ( A , B ) r a n k ( A B ) \max\{\mathrm{rank}(A),\mathrm{rank}(B)\}\leqslant \begin{array}{c} \mathrm{rank}(A,B)\\ \mathrm{rank}\left(\begin{matrix} A\\B\\\end{matrix} \right)\\\end{array} max{rank(A),rank(B)}⩽rank(A,B)rank(AB)
Thm6.1.2 Proof: \color{blue}\textbf{Thm6.1.2 Proof:} Thm6.1.2 Proof:
列向量组 A ± B = ( α 1 ± β 1 , ⋯ , α n ± β n ) A\pm B=(\alpha_1\pm\beta_1,\cdots,\alpha_n\pm\beta_n) A±B=(α1±β1,⋯,αn±βn) 可由 ( A , B ) = ( α 1 , ⋯ , α n ; β 1 , ⋯ , β n ) (A,B)=(\alpha_1,\cdots,\alpha_n;\beta_1,\cdots,\beta_n) (A,B)=(α1,⋯,αn;β1,⋯,βn) 线性表示,由 Lemma6 可知 r a n k ( A ± B ) ⩽ r a n k ( A , B ) \mathrm{rank}(A\pm B)\leqslant \mathrm{rank}(A,B) rank(A±B)⩽rank(A,B)
同理,由行向量组可证
r a n k ( A ± B ) ⩽ r a n k ( A B ) \mathrm{rank}(A\pm B)\leqslant \mathrm{rank}\left(\begin{matrix} A\\B\\ \end{matrix} \right) rank(A±B)⩽rank(AB)
Thm6.2 Proof1: \color{blue}\textbf{Thm6.2 Proof1:} Thm6.2 Proof1:
记矩阵 ( A m n , B m s ) (A_{mn},B_{ms}) (Amn,Bms) 极大无关向量组所构成的矩阵为 C m , t ( 0 < t ⩽ min { m , n + s } ) C_{m,t} (0
若 ( A , B ) (A,B) (A,B) 的极大无关组线性无关,则 t = r a n k ( A ) + r a n k ( B ) t=\mathrm{rank}(A)+\mathrm{rank}(B) t=rank(A)+rank(B);若线性相关,则 t < r a n k ( A ) + r a n k ( B ) t<\mathrm{rank}(A)+\mathrm{rank}(B) t<rank(A)+rank(B). 综上 t ⩽ r a n k ( A ) + r a n k ( B ) t\leqslant\mathrm{rank}(A)+\mathrm{rank}(B) t⩽rank(A)+rank(B),于是
r a n k ( A , B ) = r a n k ( C m , t ) ⩽ min { m , t } ⩽ min { m , r a n k ( A ) + r a n k ( B ) } ⩽ r a n k ( A ) + r a n k ( B ) \begin{aligned} \mathrm{rank}(A,B) &=\mathrm{rank}(C_{m,t}) \\&\leqslant \min\{m,t\} \\&\leqslant \min\{m,\mathrm{rank}(A)+\mathrm{rank}(B)\} \\&\leqslant \mathrm{rank}(A)+\mathrm{rank}(B) \end{aligned} rank(A,B)=rank(Cm,t)⩽min{m,t}⩽min{m,rank(A)+rank(B)}⩽rank(A)+rank(B)
同理可证
r a n k ( A B ) ⩽ r a n k ( A ) + r a n k ( B ) \mathrm{rank}\left(\begin{matrix} A\\B\\ \end{matrix} \right)\leqslant\mathrm{rank}(A)+\mathrm{rank}(B) rank(AB)⩽rank(A)+rank(B)
Thm6.2 Proof2: \color{blue}\textbf{Thm6.2 Proof2:} Thm6.2 Proof2:
r a n k ( A , B ) = r a n k ( ( I m , I m ) ( A m , n O O B m , s ) ) ⩽ min { r a n k ( I , I ) , r a n k ( A O O B ) } ⩽ r a n k ( A O O B ) = r a n k ( A ) + r a n k ( B ) \begin{aligned} \mathrm{rank}(A,B)&=\mathrm{rank}\left((I_m,I_m)\left( \begin{matrix}A_{m,n}&O\\O&B_{m,s}\\\end{matrix} \right) \right) \\&\leqslant \min\{\mathrm{rank}(I,I),\mathrm{rank}\left( \begin{matrix}A&O\\O&B\\\end{matrix} \right)\} \\&\leqslant\mathrm{rank}\left( \begin{matrix}A&O\\O&B\\\end{matrix} \right) \\&=\mathrm{rank}(A)+\mathrm{rank}(B) \end{aligned} rank(A,B)=rank((Im,Im)(Am,nOOBm,s))⩽min{rank(I,I),rank(AOOB)}⩽rank(AOOB)=rank(A)+rank(B)
同理可证
r a n k ( A B ) ⩽ r a n k ( A ) + r a n k ( B ) \mathrm{rank}\left(\begin{matrix}A\\B\\\end{matrix}\right) \leqslant \mathrm{rank}(A)+\mathrm{rank}(B) rank(AB)⩽rank(A)+rank(B)
Thm6.3 Proof: \color{blue}\textbf{Thm6.3 Proof:} Thm6.3 Proof:
对矩阵进行初等行变换化至阶梯型
A m n → r ( A r a n k ( A ) , n O ) , B s t → r ( B r a n k ( B ) , t O ) A_{mn}\xrightarrow{r} \left( \begin{matrix} A_{\mathrm{rank}\left( A \right) ,n}\\ O\\ \end{matrix} \right) ,\ B_{st}\xrightarrow{r} \left( \begin{matrix} B_{\mathrm{rank}\left( B \right) ,t}\\ O\\ \end{matrix} \right) Amnr(Arank(A),nO), Bstr(Brank(B),tO)
则
( A O O B ) → r ( A r a n k ( A ) , n O O O O B r a n k ( B ) , t O O ) → ( A r a n k ( A ) , n O O B r a n k ( B ) , t O O O O ) \left( \begin{matrix} A& O\\ O& B\\ \end{matrix} \right) \xrightarrow{r} \left( \begin{matrix} A_{\mathrm{rank}\left( A \right) ,n}& O\\ O& O\\ O& B_{\mathrm{rank}\left( B \right) ,t}\\ O& O\\ \end{matrix} \right) \rightarrow \left( \begin{matrix} A_{\mathrm{rank}\left( A \right) ,n}& O\\ O& B_{\mathrm{rank}\left( B \right) ,t}\\ O& O\\ O& O\\ \end{matrix} \right) (AOOB)r Arank(A),nOOOOOBrank(B),tO → Arank(A),nOOOOBrank(B),tOO
有限次初等变换不改变矩阵的秩,故有
r a n k ( A O O B ) = r a n k ( A r a n k ( A ) , n ) + r a n k ( B r a n k ( B ) , t ) = r a n k ( A ) + r a n k ( B ) \begin{aligned} \mathrm{rank}\left( \begin{matrix} A& O\\ O& B\\ \end{matrix} \right) &=\mathrm{rank}\left( A_{\mathrm{rank}\left( A \right) ,n} \right) +\mathrm{rank}\left( B_{\mathrm{rank}\left( B \right) ,t} \right) \\&=\mathrm{rank}( A )+\mathrm{rank}(B) \end{aligned} rank(AOOB)=rank(Arank(A),n)+rank(Brank(B),t)=rank(A)+rank(B)
Thm6.4 Proof: \color{blue}\textbf{Thm6.4 Proof:} Thm6.4 Proof:
记 ∣ A r a n k ( A ) ∣ , ∣ B r a n k ( B ) ∣ |A_{\mathrm{rank}(A)}|,|B_{\mathrm{rank}(B)}| ∣Arank(A)∣,∣Brank(B)∣ 分别为矩阵 A , B A,B A,B 的最高阶非零子式,则
∣ A r a n k ( A ) C ′ O B r a n k ( B ) ∣ = ∣ A r a n k ( A ) O O B r a n k ( B ) ∣ = ∣ A r a n k ( A ) ∣ ∣ B r a n k ( B ) ∣ ≠ 0 \left| \begin{matrix} A_{\mathrm{rank}\left( A \right)}& C'\\ O& B_{\mathrm{rank}\left( B \right)}\\ \end{matrix} \right| = \left|\begin{matrix} A_{\mathrm{rank}\left( A \right)}& O\\ O& B_{\mathrm{rank}\left( B \right)}\\ \end{matrix} \right|=|A_{\mathrm{rank}\left( A \right)}||B_{\mathrm{rank}\left( B \right)}|\ne 0 Arank(A)OC′Brank(B) = Arank(A)OOBrank(B) =∣Arank(A)∣∣Brank(B)∣=0
所以上述两个方阵皆为满秩,于是
r a n k ( A C O B ) ⩾ r a n k ( A r a n k ( A ) C ′ O B r a n k ( B ) ) = r a n k ( A r a n k ( A ) O O B r a n k ( B ) ) = r a n k ( A ) + r a n k ( B ) = r a n k ( A O O B ) \begin{aligned} \mathrm{rank}\left( \begin{matrix} A& C\\ O& B\\ \end{matrix} \right) &\geqslant \mathrm{rank}\left( \begin{matrix} A_{\mathrm{rank}\left( A \right)}& C'\\ O& B_{\mathrm{rank}\left( B \right)}\\ \end{matrix} \right) \\&= \mathrm{rank}\left( \begin{matrix} A_{\mathrm{rank}\left( A \right)}& O\\ O& B_{\mathrm{rank}\left( B \right)}\\ \end{matrix} \right) \\&=\mathrm{rank}\left( A \right) + \mathrm{rank}\left( B \right) \\&=\mathrm{rank}\left( \begin{matrix} A& O\\ O& B\\ \end{matrix} \right) \end{aligned} rank(AOCB)⩾rank(Arank(A)OC′Brank(B))=rank(Arank(A)OOBrank(B))=rank(A)+rank(B)=rank(AOOB)
Thm6.5 Proof: \color{blue}\textbf{Thm6.5 Proof:} Thm6.5 Proof:
r a n k ( A C O B ) ⩽ r a n k ( A , C ) + r a n k ( O , B ) ⩽ r a n k ( A ) + r a n k ( C ) + r a n k ( B ) \mathrm{rank}\left( \begin{matrix} A& C\\ O& B\\ \end{matrix} \right) \leqslant\mathrm{rank}(A,C)+\mathrm{rank}(O,B) \leqslant\mathrm{rank}(A)+\mathrm{rank}(C)+\mathrm{rank}(B) rank(AOCB)⩽rank(A,C)+rank(O,B)⩽rank(A)+rank(C)+rank(B)
Cor6.1 Proof: \color{blue}\textbf{Cor6.1 Proof:} Cor6.1 Proof:
r a n k ( A ) = r a n k ( ( A − B ) + B ) ⩽ r a n k ( A − B ) + r a n k ( B ) \mathrm{rank}(A)=\mathrm{rank}((A-B)+B)\leqslant \mathrm{rank}(A-B)+\mathrm{rank}(B) rank(A)=rank((A−B)+B)⩽rank(A−B)+rank(B)
Cor6.2 Proof: \color{blue}\textbf{Cor6.2 Proof:} Cor6.2 Proof:
r a n k ( A B − I ) = r a n k ( A ( B − I ) + A − I ) ⩽ r a n k ( A ( B − I ) ) + r a n k ( A − I ) ⩽ r a n k ( B − I ) + r a n k ( A − I ) \begin{aligned}\mathrm{rank}(AB-I)&=\mathrm{rank}(A(B-I)+A-I)\\&\leqslant \mathrm{rank}(A(B-I))+ \mathrm{rank}(A-I)\\&\leqslant \mathrm{rank}(B-I)+\mathrm{rank}(A-I)\end{aligned} rank(AB−I)=rank(A(B−I)+A−I)⩽rank(A(B−I))+rank(A−I)⩽rank(B−I)+rank(A−I)
Theorem7 \textbf{Theorem7} Theorem7
若 A ∈ M m , n ( F ) , B ∈ M n , s ( F ) A\in M_{m,n}(\mathbb{F}),B\in M_{n,s}(\mathbb{F}) A∈Mm,n(F),B∈Mn,s(F),则
r a n k ( A ) + r a n k ( B ) − n ⩽ r ( A B ) ⩽ min { r a n k ( A ) , r a n k ( B ) } \mathrm{rank}(A)+\mathrm{rank}(B)-n \leqslant r(AB) \leqslant \min\{\mathrm{rank}(A),\mathrm{rank}(B)\} rank(A)+rank(B)−n⩽r(AB)⩽min{rank(A),rank(B)}
其中,左侧不等式称 Sylvester \text{Sylvester} Sylvester 秩不等式.
Corollary7 \textbf{Corollary7} Corollary7
LHS ⇒ A B = O r a n k ( A ) + r a n k ( B ) ⩽ n RHS ⇔ { r a n k ( A B ) ⩽ r a n k ( A ) ⇒ r a n k ( B ) = n r a n k ( A B ) = r a n k ( A ) r a n k ( A B ) ⩽ r a n k ( B ) ⇒ r a n k ( A ) = n r a n k ( A B ) = r a n k ( B ) \begin{aligned} &\text{LHS}\xRightarrow{AB=O\ }\mathrm{rank}(A)+\mathrm{rank}(B) \leqslant n\\ \\&\text{RHS}\Leftrightarrow \left\{ \begin{array}{l} \mathrm{rank}(AB)\leqslant \mathrm{rank}(A) \xRightarrow{\mathrm{rank}(B)=n\ }\mathrm{rank}({AB})=\mathrm{rank}(A) \\\\\mathrm{rank}(AB)\leqslant\mathrm{rank}(B) \xRightarrow{\mathrm{rank}(A)=n\ }\mathrm{rank}({AB})=\mathrm{rank}(B) \end{array} \right. \end{aligned} LHSAB=O rank(A)+rank(B)⩽nRHS⇔⎩ ⎨ ⎧rank(AB)⩽rank(A)rank(B)=n rank(AB)=rank(A)rank(AB)⩽rank(B)rank(A)=n rank(AB)=rank(B)
Thm7 LHS Proof1: \color{blue}\textbf{Thm7 LHS Proof1:} Thm7 LHS Proof1:
构造矩阵,进行初等变换
( I n O O A B ) → r 2 + A ⋅ r 1 ( I n O A A B ) → c 2 + c 1 ⋅ ( − B ) ( I n − B A O ) → c 1 ↔ − c 2 ( B I n O A ) \begin{aligned} \left( \begin{matrix} I_n& O\\ O& AB\\ \end{matrix} \right) &\xrightarrow{r_2+A\cdot r_1}\left( \begin{matrix} I_n& O\\ A& AB\\ \end{matrix} \right) \xrightarrow{c_2+c_1\cdot \left( -B \right)}\left( \begin{matrix} I_n& -B\\ A& O\\ \end{matrix} \right) \\&\xrightarrow{c_1\leftrightarrow -c_2}\left( \begin{matrix} B& I_n\\ O& A\\ \end{matrix} \right) \end{aligned} (InOOAB)r2+A⋅r1(InAOAB)c2+c1⋅(−B)(InA−BO)c1↔−c2(BOInA)
则
n + r a n k ( A B ) = r a n k ( I n ) + r a n k ( A B ) = r a n k ( I n O O A B ) = r a n k ( B I n O A ) ⩾ r a n k ( B O O A ) = r a n k ( A ) + r a n k ( B ) \begin{aligned} n+\mathrm{rank}\left( AB \right) &=\mathrm{rank}\left( I_n \right) +\mathrm{rank}\left( AB \right) \\& =\mathrm{rank}\left( \begin{matrix} I_n& O\\ O& AB\\ \end{matrix} \right) \\&=\mathrm{rank}\left( \begin{matrix} B& I_n\\ O& A\\ \end{matrix} \right) \\&\geqslant\mathrm{rank}\left( \begin{matrix} B& O\\ O& A\\ \end{matrix} \right) \\&= \mathrm{rank}\left( A \right) +\mathrm{rank}\left( B \right) \end{aligned} n+rank(AB)=rank(In)+rank(AB)=rank(InOOAB)=rank(BOInA)⩾rank(BOOA)=rank(A)+rank(B)
Thm7 LHS Proof2: \color{blue}\textbf{Thm7 LHS Proof2:} Thm7 LHS Proof2:
设 U , V , W U,V,W U,V,W 为有限维线性空间, B ∈ H o m ( U s , V n ) , A ∈ H o m ( V n , W m ) \mathscr{B}\in \mathrm{Hom}(U^s,V^n) ,\ \mathscr{A}\in \mathrm{Hom}(V^n,W^m) B∈Hom(Us,Vn), A∈Hom(Vn,Wm),则 A B ∈ H o m ( U s , W m ) \mathscr{AB}\in \mathrm{Hom}(U^s,W^m) AB∈Hom(Us,Wm),
对 A \mathscr{A} A 作限制映射 A ∣ I m B : I m B → A ( I m B ) = I m ( A B ) \mathscr{A}|_{\mathrm{Im}\mathscr{B}}:\mathrm{Im}\mathscr{B}\to \mathscr{A}(\mathrm{Im}\mathscr{B})=\mathrm{Im}(\mathscr{AB}) A∣ImB:ImB→A(ImB)=Im(AB),故有
dim I m ( B ) = dim I m ( A ∣ I m B ) + dim K e r ( A ∣ I m B ) = dim I m ( A B ) + dim K e r ( A ∣ I m B ) = dim I m ( A B ) + dim ( K e r A ∩ I m B ) ⩽ dim I m ( A B ) + dim K e r ( A ) = dim I m ( A B ) + dim ( V n ) − dim I m ( A ) = dim I m ( A B ) + n − dim I m ( A ) \begin{aligned} \dim\mathrm{Im}(\mathscr{B}) &=\dim\mathrm{Im}(\mathscr{A}|_{\mathrm{Im}\mathscr{B}})+\dim\mathrm{Ker}(\mathscr{A}|_{\mathrm{Im}\mathscr{B}}) \\&=\dim\mathrm{Im}(\mathscr{AB})+\dim\mathrm{Ker}(\mathscr{A}|_{\mathrm{Im}\mathscr{B}}) \\&=\dim\mathrm{Im}(\mathscr{AB})+\dim(\mathrm{Ker}\mathscr{A}\cap\mathrm{Im}\mathscr{B}) \\&\leqslant \dim\mathrm{Im}(\mathscr{AB})+\dim\mathrm{Ker}(\mathscr{A}) \\&=\dim\mathrm{Im}(\mathscr{AB})+\dim(V^n)-\dim\mathrm{Im}(\mathscr{A}) \\&=\dim\mathrm{Im}(\mathscr{AB})+n-\dim\mathrm{Im}(\mathscr{A}) \end{aligned} dimIm(B)=dimIm(A∣ImB)+dimKer(A∣ImB)=dimIm(AB)+dimKer(A∣ImB)=dimIm(AB)+dim(KerA∩ImB)⩽dimIm(AB)+dimKer(A)=dimIm(AB)+dim(Vn)−dimIm(A)=dimIm(AB)+n−dimIm(A)
得证.
Thm7 RHS Proof: \color{blue}\textbf{Thm7 RHS Proof:} Thm7 RHS Proof:
设 A = ( { α i } i = 1 n ) m × n , B = ( b i j ) n × s , A B = ( { γ i } i = 1 n ) m × s A=(\{\alpha _i\}_{i=1}^{n})_{m\times n},B=(b_{ij})_{n\times s},AB=(\{\gamma _i\}_{i=1}^{n})_{m\times s} A=({αi}i=1n)m×n,B=(bij)n×s,AB=({γi}i=1n)m×s,则
( α 1 , ⋯ , α n ) [ b 11 ⋯ b 1 s ⋮ ⋱ ⋮ b n 1 ⋯ b n s ] = ( ∑ i = 1 n b i 1 α i , ⋯ , ∑ i = 1 n b i s α i ) : = ( γ 1 , ⋯ , γ s ) \left( \alpha _1,\cdots ,\alpha _n \right) \left[ \begin{matrix} b_{11}& \cdots& b_{1s}\\ \vdots& \ddots& \vdots\\ b_{n1}& \cdots& b_{ns}\\ \end{matrix} \right] =\left( \sum_{i=1}^n{b_{i1}\alpha _i},\cdots ,\sum_{i=1}^n{b_{is}\alpha _i} \right) :=\left( \gamma _1,\cdots ,\gamma _s \right) (α1,⋯,αn) b11⋮bn1⋯⋱⋯b1s⋮bns =(i=1∑nbi1αi,⋯,i=1∑nbisαi):=(γ1,⋯,γs)
A B AB AB 任一列向量均可表示为 A A A 列向量的线性组合,即 A B AB AB 列向量可由 A A A 线性表出,所以 r a n k ( A B ) ⩽ r a n k ( A ) \mathrm{rank}(AB)\leqslant \mathrm{rank}(A) rank(AB)⩽rank(A)
同理可得, A B AB AB 行向量可由 B B B 行向量的线性表出,故
r a n k ( A B ) ⩽ r a n k ( B ) \mathrm{rank}(AB)\leqslant \mathrm{rank}(B) rank(AB)⩽rank(B)
或者由上述不等式结论
r a n k ( A B ) = r a n k ( ( A B ) T ) = r a n k ( B T A T ) ⩽ r a n k ( B T ) = r a n k ( B ) \mathrm{rank}(AB)=\mathrm{rank}((AB)^{\mathrm{T}})=\mathrm{rank}(B^{\mathrm{T}}A^{\mathrm{T}})\leqslant \mathrm{rank}(B^{\mathrm{T}})=\mathrm{rank}(B) rank(AB)=rank((AB)T)=rank(BTAT)⩽rank(BT)=rank(B)
Cor7 LHS Proof1: \color{blue}\textbf{Cor7 LHS Proof1:} Cor7 LHS Proof1:
A B = O ⇔ r a n k ( A B ) = 0 AB=O\Leftrightarrow \mathrm{rank}(AB)=0 AB=O⇔rank(AB)=0,带入 S y l v e s t e r \mathrm{Sylvester} Sylvester 不等式可知结论成立.
Cor7 LHS Proof2: \color{blue}\textbf{Cor7 LHS Proof2:} Cor7 LHS Proof2:
将矩阵 B B B 写作形式行向量
A B = A ( b 1 , b 2 , ⋯ , b s ) = ( A b 1 , A b 2 , ⋯ , A b s ) = ( 0 , 0 , ⋯ , 0 ) AB=A(b_1,b_2,\cdots,b_s)=(Ab_1,Ab_2,\cdots,Ab_s)=(0,0,\cdots,0) AB=A(b1,b2,⋯,bs)=(Ab1,Ab2,⋯,Abs)=(0,0,⋯,0)
则齐次线性方程组 A x = 0 Ax=0 Ax=0 存在非零解集,解空间维数高于子空间维数,即 n − r a n k ( A ) ⩾ r a n k ( b 1 , b 2 , ⋯ , b s ) = r a n k ( B ) n-\mathrm{rank}(A) \geqslant \mathrm{rank}(b_1,b_2,\cdots,b_s)=\mathrm{rank}(B) n−rank(A)⩾rank(b1,b2,⋯,bs)=rank(B)
Cor7 RHS Proof1: \color{blue}\textbf{Cor7 RHS Proof1:} Cor7 RHS Proof1:
由于 B ∈ M n , s ( F ) , r a n k ( B ) = n B\in M_{n,s}(\mathbb{F}),\mathrm{rank}(B)=n B∈Mn,s(F),rank(B)=n,所以存在可逆矩阵 Q s Q_s Qs,使得 B n , s Q n = ( I n , O n , s − n ) B_{n,s}Q_n=(I_n,O_{n,s-n}) Bn,sQn=(In,On,s−n)
故 A m , n B n , s Q s = A m , n ( I n , O n , s − n ) = ( A m , n , O m , s − n ) A_{m,n}B_{n,s}Q_{s}=A_{m,n}(I_n,O_{n,s-n})=(A_{m,n},O_{m,s-n}) Am,nBn,sQs=Am,n(In,On,s−n)=(Am,n,Om,s−n)
从而 r a n k ( A B ) = r a n k ( A B Q ) = r a n k ( A , O ) = r a n k ( A ) \mathrm{rank}(AB)=\mathrm{rank}(ABQ)=\mathrm{rank}(A,O)=\mathrm{rank}(A) rank(AB)=rank(ABQ)=rank(A,O)=rank(A)
即右乘行满秩矩阵秩不变.
Cor7 RHS Proof2: \color{blue}\textbf{Cor7 RHS Proof2:} Cor7 RHS Proof2:
由于
n = r a n k ( A m n ) = r a n k ( A n m T A m n ) n=\mathrm{rank}(A_{mn})=\mathrm{rank}(A_{nm}^TA_{mn}) n=rank(Amn)=rank(AnmTAmn)
故 A T A A^TA ATA 存在逆矩阵,于是
r a n k ( B ) = r a n k ( ( A T A ) − 1 ( A T A ) B ) = r a n k ( [ ( A T A ) − 1 A T ] ( A B ) ) ⩽ min { r a n k ( ( A T A ) − 1 A T ) , r a n k ( A B ) } ⩽ r a n k ( A B ) ⩽ min { r a n k ( A ) , r a n k ( B ) } ⩽ r a n k ( B ) \begin{aligned} \mathrm{rank}(B) &=\mathrm{rank}((A^TA)^{-1}(A^TA)B) \\&=\mathrm{rank}([(A^TA)^{-1}A^T](AB)) \\&\leqslant\min\{\mathrm{rank}((A^TA)^{-1}A^T),\mathrm{rank}(AB)\} \\&\leqslant\mathrm{rank}(AB) \\&\leqslant\min\{\mathrm{rank}(A),\mathrm{rank}(B)\} \\&\leqslant\mathrm{rank}(B) \end{aligned} rank(B)=rank((ATA)−1(ATA)B)=rank([(ATA)−1AT](AB))⩽min{rank((ATA)−1AT),rank(AB)}⩽rank(AB)⩽min{rank(A),rank(B)}⩽rank(B)
从而
r a n k ( A m n B n s ) = r a n k ( A ) = n r a n k ( B n s ) \mathrm{rank}(A_{mn}B_{ns})\xlongequal{\mathrm{rank}(A)=n}\mathrm{rank}(B_{ns}) rank(AmnBns)rank(A)=nrank(Bns)
即左乘列满秩矩阵秩不变.
Theorem8 \textbf{Theorem8} Theorem8 Frobenius \ \text{Frobenius} Frobenius 秩不等式
若 A ∈ M m , n ( F ) , B ∈ M n , s ( F ) , C ∈ M s , t ( F ) A\in M_{m,n}(\mathbb{F}),B\in M_{n,s}(\mathbb{F}),C\in M_{s,t}(\mathbb{F}) A∈Mm,n(F),B∈Mn,s(F),C∈Ms,t(F),则
r a n k ( A B C ) ⩾ r a n k ( A B ) + r a n k ( B C ) − r a n k ( B ) \mathrm{rank}(ABC)\geqslant \mathrm{rank}(AB)+\mathrm{rank}(BC)-\mathrm{rank}(B) rank(ABC)⩾rank(AB)+rank(BC)−rank(B)
取 B = I n , C ∈ M n , t ( F ) B=I_n,\ C\in M_{n,t}(\mathbb{F}) B=In, C∈Mn,t(F),即为 Sylvester \text{Sylvester} Sylvester 不等式, Frobenius \text{Frobenius} Frobenius 不等式为其推广形式.
Thm8 Proof1: \color{blue}\textbf{Thm8 Proof1:} Thm8 Proof1:
( B O O A B C ) → r 2 + A ⋅ r 1 ( B O A B A B C ) → c 2 − c 1 ⋅ C ( B − B C A B O ) → c 1 ↔ − c 2 ( B C B O A B ) \begin{aligned} \left( \begin{matrix} B& O\\ O& ABC\\ \end{matrix} \right) &\xrightarrow{r_2+A\cdot r_1}\left( \begin{matrix} B& O\\ AB& ABC\\ \end{matrix} \right) \xrightarrow{c_2-c_1\cdot C }\left( \begin{matrix} B& -BC\\ AB& O\\ \end{matrix} \right) \\ &\xrightarrow{c_1\leftrightarrow -c_2}\left( \begin{matrix} BC& B\\ O& AB\\ \end{matrix} \right) \end{aligned} (BOOABC)r2+A⋅r1(BABOABC)c2−c1⋅C(BAB−BCO)c1↔−c2(BCOBAB)
则
r a n k ( B O O A B C ) = r a n k ( B C B O A B ) ⩾ r a n k ( B C O O A B ) \mathrm{rank}\left( \begin{matrix} B& O\\ O& ABC\\ \end{matrix} \right) =\mathrm{rank}\left( \begin{matrix} BC& B\\ O& AB\\ \end{matrix} \right) \geqslant \mathrm{rank}\left( \begin{matrix} BC& O\\ O& AB\\ \end{matrix} \right) rank(BOOABC)=rank(BCOBAB)⩾rank(BCOOAB)
即
r a n k ( A B C ) + r a n k ( B ) ⩾ r a n k ( A B ) + r a n k ( B C ) \mathrm{rank}(ABC)+\mathrm{rank}(B)\geqslant \mathrm{rank}(AB)+\mathrm{rank}(BC) rank(ABC)+rank(B)⩾rank(AB)+rank(BC)
Thm8 Proof2: \color{blue}\textbf{Thm8 Proof2:} Thm8 Proof2:
设 T , U , V , W T,U,V,W T,U,V,W 为有限维线性空间, C ∈ H o m ( T t , U s ) , B ∈ H o m ( U s , V n ) , A ∈ H o m ( V n , W m ) , B C ∈ H o m ( T t , V n ) \mathscr{C}\in\mathrm{Hom}(T^t,U^s),\mathscr{B}\in\mathrm{Hom}(U^s,V^n),\mathscr{A}\in\mathrm{Hom}(V^n,W^m),\mathscr{BC}\in\mathrm{Hom}(T^t,V^n) C∈Hom(Tt,Us),B∈Hom(Us,Vn),A∈Hom(Vn,Wm),BC∈Hom(Tt,Vn),
对 A \mathscr{A} A 作限制映射 A ∣ I m B , A ∣ I m B C \mathscr{A}|_{\mathrm{Im}\mathscr{B}} \ ,\ \mathscr{A}|_{\mathrm{Im}\mathscr{BC}} A∣ImB , A∣ImBC,则有
dim I m ( B ) = dim I m ( A B ) + dim ( K e r A ∩ I m B ) dim I m ( B C ) = dim I m ( A B C ) + dim ( K e r A ∩ I m B C ) \begin{align*} \dim\mathrm{Im}(\mathscr{B}) &=\dim\mathrm{Im}(\mathscr{AB})+\dim(\mathrm{Ker}\mathscr{A}\cap\mathrm{Im}\mathscr{B}) \\ \dim\mathrm{Im}(\mathscr{BC}) &=\dim\mathrm{Im}(\mathscr{ABC})+\dim(\mathrm{Ker}\mathscr{A}\cap\mathrm{Im}\mathscr{BC}) \end{align*} dimIm(B)dimIm(BC)=dimIm(AB)+dim(KerA∩ImB)=dimIm(ABC)+dim(KerA∩ImBC)
且 K e r A ∩ I m B C ⊆ K e r A ∩ I m B ⇒ dim ( K e r A ∩ I m B C ) ⩽ dim ( K e r A ∩ I m B ) \mathrm{Ker}\mathscr{A}\cap\mathrm{Im}\mathscr{BC}\subseteq\mathrm{Ker}\mathscr{A}\cap\mathrm{Im}\mathscr{B}\Rightarrow \dim(\mathrm{Ker}\mathscr{A}\cap\mathrm{Im}\mathscr{BC})\leqslant \dim(\mathrm{Ker}\mathscr{A}\cap\mathrm{Im}\mathscr{B}) KerA∩ImBC⊆KerA∩ImB⇒dim(KerA∩ImBC)⩽dim(KerA∩ImB)
故
dim I m ( B ) − dim I m ( A B ) ⩽ dim I m ( B C ) − dim I m ( A B C ) \dim\mathrm{Im}(\mathscr{B}) -\dim\mathrm{Im}(\mathscr{AB})\leqslant \dim\mathrm{Im}(\mathscr{BC}) -\dim\mathrm{Im}(\mathscr{ABC}) dimIm(B)−dimIm(AB)⩽dimIm(BC)−dimIm(ABC)
Theorem9 \textbf{Theorem9} Theorem9
若 ( A n + c 1 I n ) ( A n + c 2 I n ) = O (A_n+c_{_1}I_n)(A_n+c_{_2}I_n)=O (An+c1In)(An+c2In)=O,其中 c 1 , c 2 ∈ R ( c 1 ≠ c 2 ) c_1,c_2 \in\R(c_1\ne c_2) c1,c2∈R(c1=c2),则
r a n k ( A + c 1 I ) + r a n k ( A + c 2 I ) = n \mathrm{rank}(A+c_{_1}I)+\mathrm{rank}(A+c_{_2}I)=n rank(A+c1I)+rank(A+c2I)=nCorollary9.1 \textbf{Corollary9.1} Corollary9.1
方阵 A n A_n An 为幂等矩阵 (即 A 2 = A A^2=A A2=A) 的充要条件为 r a n k ( A ) + r a n k ( A − I ) = n \mathrm{rank}(A)+\mathrm{rank}(A-I)=n rank(A)+rank(A−I)=n.
Corollary9.2 \textbf{Corollary9.2} Corollary9.2
方阵 A n A_n An 为对合矩阵 (即 A 2 = I A^2=I A2=I ) 的充要条件为 r a n k ( A + I ) + r a n k ( A − I ) = n \mathrm{rank}(A+I)+\mathrm{rank}(A-I)=n rank(A+I)+rank(A−I)=n.
Thm9 Proof: \color{blue}\textbf{Thm9 Proof:} Thm9 Proof:
n = r a n k ( I ) = r a n k ( ( c 1 − c 2 ) I ) = r a n k ( ( A + c 1 I ) − ( A + c 2 I ) ) ⩽ r a n k ( A + c 1 I ) + r a n k ( A + c 2 I ) ⩽ n \begin{aligned} n&=\mathrm{rank}(I) \\&=\mathrm{rank}((c_1-c_2)I) \\&=\mathrm{rank}((A+c_1I)-(A+c_2I)) \\&\leqslant \mathrm{rank}(A+c_1I)+\mathrm{rank}(A+c_2I) \\&\leqslant n \end{aligned} n=rank(I)=rank((c1−c2)I)=rank((A+c1I)−(A+c2I))⩽rank(A+c1I)+rank(A+c2I)⩽n
故 r a n k ( A + c 1 I ) + r a n k ( A + c 2 I ) = n \mathrm{rank}(A+c_{_1}I)+\mathrm{rank}(A+c_{_2}I)=n rank(A+c1I)+rank(A+c2I)=n
Cor9 Proof1: \color{blue}\textbf{Cor9 Proof1:} Cor9 Proof1:
分别取 ( c 1 , c 2 ) = ( 0 , 1 ) , ( 1 , − 1 ) (c_1,c_2)=(0,1),(1,-1) (c1,c2)=(0,1),(1,−1),由 Theorem 8 可知结论成立.
Cor9.1 Proof2: \color{blue}\textbf{Cor9.1 Proof2:} Cor9.1 Proof2:
构造矩阵作初等变换
( A O O I − A ) → r 2 + r 1 ( A O A I − A ) → c 2 + c 1 ( A A A I ) → r 1 + ( − A ) r 2 ( A − A 2 O O I ) \begin{aligned} \left( \begin{matrix} A& O\\ O& I-A\\ \end{matrix} \right) &\xrightarrow{r_2+r_1}\left( \begin{matrix} A& O\\ A& I-A\\ \end{matrix} \right) \xrightarrow{c_2+c_1}\left( \begin{matrix} A& A\\ A& I\\ \end{matrix} \right) \\&\xrightarrow{r_1+\left( -A \right) r_2}\left( \begin{matrix} A-A^2& O\\ O& I\\ \end{matrix} \right) \end{aligned} (AOOI−A)r2+r1(AAOI−A)c2+c1(AAAI)r1+(−A)r2(A−A2OOI)
则
r a n k ( A O O I − A ) = r a n k ( A − A 2 O O I ) \mathrm{rank}\left( \begin{matrix} A& O\\ O& I-A\\ \end{matrix} \right) =\mathrm{rank}\left( \begin{matrix} A-A^2& O\\ O& I\\ \end{matrix} \right) rank(AOOI−A)=rank(A−A2OOI)
从而
r a n k ( A ) + r a n k ( I − A ) = r a n k ( A − A 2 ) + r a n k ( I ) = A 2 − A = O 0 + n = n \begin{aligned} \mathrm{rank}\left( A \right) +\mathrm{rank}\left( I-A \right) &=\mathrm{rank}\left( A-A^2 \right) +\mathrm{rank}\left( I \right) \\&\xlongequal{ _{\ A^2-A=O \ }} 0+n=n \end{aligned} rank(A)+rank(I−A)=rank(A−A2)+rank(I) A2−A=O 0+n=n
Cor9.2 Proof2: \color{blue}\textbf{Cor9.2 Proof2:} Cor9.2 Proof2:
构造矩阵作初等变换
( A + I O O A − I ) → ( 2 I O − ( A + I ) − ( A + I ) ( A − I ) 2 ) → ( 2 I O O − ( A 2 − I ) 2 ) \quad \left( \begin{matrix} A+I& O\\ O& A-I\\ \end{matrix} \right) \rightarrow \left( \begin{matrix} 2I& O\\ -\left( A+I \right)& -\frac{\left( A+I \right) \left( A-I \right)}{2}\\ \end{matrix} \right) \rightarrow \left( \begin{matrix} 2I& O\\ O& -\frac{\left( A^2-I \right)}{2}\\ \end{matrix} \right) (A+IOOA−I)→(2I−(A+I)O−2(A+I)(A−I))→(2IOO−2(A2−I))
则
r a n k ( A + I ) + r a n k ( A − I ) = r a n k ( 2 I ) + r a n k ( I − A 2 2 ) = A 2 − I = O n + 0 = n \begin{aligned} \mathrm{rank}(A+I)+\mathrm{rank}(A-I)&=\mathrm{rank}(2I)+\mathrm{rank}\left(\frac{I-A^2}{2}\right) \\&\xlongequal{_{\ A^2-I=O\ }} n+0 = n \end{aligned} rank(A+I)+rank(A−I)=rank(2I)+rank(2I−A2) A2−I=O n+0=n