- 英语语法学习:非谓语动词&过去分词的形式练习!
树先生本人
一、过去分词的变化规则1.规则变化(规则动词的变化规则)规则动词的过去分词与过去式变化规则一致:(1)一般而言,在动词原形后直接加-ed.(2)以字母e结尾的动词,直接加-d.(3)以辅音字母加-y结尾的动词,变y为i,再加-ed.(4)以重读闭音节(辅音+元音+辅音)形式结尾的动词,双写末尾的辅音字母,再加-ed.2.不规则变化(不规则动词的变化规则)过去分词的不规则变化,可以和过去式的不规则变
- NLP_jieba中文分词的常用模块
Hiweir ·
NLP_jieba的使用自然语言处理中文分词人工智能nlp
1.jieba分词模式(1)精确模式:把句子最精确的切分开,比较适合文本分析.默认精确模式.(2)全模式:把句子中所有可能成词的词都扫描出来,cut_all=True,缺点:速度快,不能解决歧义(3)paddle:利用百度的paddlepaddle深度学习框架.简单来说就是使用百度提供的分词模型.use_paddle=True.(4)搜索引擎模式:在精确模式的基础上,对长词再进行切分,提高召回率,
- docker安装与使用
小鱼做了就会
开发框架及各种插件dockerjavamavenubuntulinux
docker安装与使用一、docker安装二、容器三、镜像五、Docker部署ES5.1部署ES5.2配置跨域5.3重启容器5.4Docker部署ES-IK分词器5.5Docker部署ElasticSearch-Head5.6Docker快速安装kibana一、docker安装sudowget-qO-https://get.docker.com/|bash二、容器容器是由镜像实例化而来,这和我们学
- Python的情感词典情感分析和情绪计算
yava_free
python大数据人工智能
一.大连理工中文情感词典情感分析(SentimentAnalysis)和情绪分类(EmotionClassification)都是非常重要的文本挖掘手段。情感分析的基本流程如下图所示,通常包括:自定义爬虫抓取文本信息;使用Jieba工具进行中文分词、词性标注;定义情感词典提取每行文本的情感词;通过情感词构建情感矩阵,并计算情感分数;结果评估,包括将情感分数置于0.5到-0.5之间,并可视化显示。目
- 使用Python和Jieba库进行中文情感分析:从文本预处理到模型训练的完整指南
快撑死的鱼
Python算法精解python人工智能开发语言
使用Python和Jieba库进行中文情感分析:从文本预处理到模型训练的完整指南情感分析(SentimentAnalysis)是自然语言处理(NLP)领域中的一个重要分支,旨在从文本中识别出情绪、态度或意见等主观信息。在中文文本处理中,由于语言特性不同于英语,如何高效、准确地分词和提取关键词成为情感分析的关键步骤之一。在这篇文章中,我们将深入探讨如何使用Python和Jieba库进行中文情感分析,
- python连接es_Elasticsearch --- 3. ik中文分词器, python操作es
weixin_39962285
python连接es
一.IK中文分词器1.下载安装2.测试#显示结果{"tokens":[{"token":"上海","start_offset":0,"end_offset":2,"type":"CN_WORD","position":0},{"token":"自来水","start_offset":2,"end_offset":5,"type":"CN_WORD","position":1},{"token":"
- 使用Python的Elasticsearch客户端 elasticsearch-py 来完成删除现有索引、重新创建索引并测试分词的示例代码
Roc-xb
Pythonpythonelasticsearch
以下是一个使用Python的Elasticsearch客户端elasticsearch-py来完成删除现有索引、重新创建索引并测试分词的示例代码一、安装依赖pipinstallelasticsearch二、运行效果三、程序代码fromelasticsearchimportElasticsearch,NotFoundError#连接到Elasticsearches=Elasticsearch(
- JAVA使用es不分词_谈谈 Elasticsearch 分词和自定义分词
weixin_39966376
JAVA使用es不分词
初次接触Elasticsearch的同学经常会遇到分词相关的难题,比如如下这些场景:1、为什么命名有包含搜索关键词的文档,但结果里面就没有相关文档呢?2、我存进去的文档到底被分成哪些词(term)了?3、我得自定义分词规则,但感觉好麻烦呢,无从下手如果你遇到过类似的问题,希望本文可以解决你的疑惑。一、上手让我们从一个实例出发,如下创建一个文档:PUTtest/doc/1{"msg":"Eating
- es安装ik分词器
abments
ESelasticsearchjenkins大数据
下载分词器首先确定es对应的版本(假设版本是7.10.0)根据版本下载指定的分词器开始安装在线安装./bin/elasticsearch-plugininstallhttps://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.10.0/elasticsearch-analysis-ik-7.10.0.zip离线安装-
- 三国演义python分析系统_Python之三国演义(上)
weixin_40002692
三国演义python分析系统
一、设计实现详细说明1.1任务详细描述以中国四大名著之一——《三国演义》为蓝本,结合python数据分析知识进行本次的文本分析。《三国演义》全书共120回。本次的分析主要基于统计分析、文本挖掘等知识。1.2设计思路详细描述数据准备、数据预处理、分词等全书各个章节的字数、词数、段落等相关方面的关系整体词频和词云的展示全书各个章节进行聚类分析并可视化,主要进行了根据IF-IDF的系统聚类和根据词频的L
- 重生之我们在ES顶端相遇第11 章 - 深入自定义语言分词器
不能放弃治疗
Elasticsearchelasticsearch
文章目录0.前言1.英语分词器2.阿拉伯语分词器3.结语0.前言国内企业出海是大势所趋,那么基于不同的语种进行分词就显得尤为重要,因为这会让用户的搜索体验更棒!国内出海企业,会更偏向于选择欧美、中东这2个地区。因此本文章也重点介绍英语、阿拉伯语的分词。在ES中内置的分词器中,有一个叫Languageanalyzers,我们可以根据该分词器,自定义出符合业务需求的特定语言分词器。1.英语分词器英语分
- NLP面试题(9月4日笔记)
好好学习Py
自然语言处理自然语言处理笔记人工智能
常见的分词方法分词是将连续的子序列按照一定的规则进行重新组合形成词序列的过程,是NLP领域内最基础的内容。常见的分词方法有jieba分词,jieba分词支持多种分词模模式:精确模式,全模式,搜索引擎模式。1)精确模式:将句子最精确的进行切分,适合文本分析,在日常工作中最为常用;2)全模式:将句子中所有可以成词的词语都扫描出来,速度非常快,但不能消除歧义。3)搜索引擎模式:在精确模式的基础上,对长词
- 小学英语初级高频词汇学习- be
英语小天地nice
1)be+现在分词,构成进行时态,例如:Theyarehavingameeting.他们正在开会.Englishisbecomingmoreandmoreimportant.英语现在越来越重要.2)be+过去分词,构成被动语态,例如:ThewindowwasbrokenbyTom..窗户是汤姆打碎的.Englishistaughtthroughouttheworld.世界各地都教英语.3)be+动
- 微软开源 Phi-3.5 视觉模型
三花AI
三花AImicrosoft人工智能深度学习
微软刚刚发布了Phi3.5系列模型,一个小型模型("Mini")、一个混合模型("MoE")和一个视觉模型。下面是关键总结:Phi3.5Mini:3.8B参数,性能超过Llama3.1(8B)和Mistral7B,接近MistralNeMo12B。支持多种语言,使用了包含32,000个词汇的分词器。512个H100GPU,3.4万亿个tokens训练了10天。Phi3.5MoE:16x3.8B参数
- 好用的文本内容抽取关键词API接口调用示例
天聚数行
天行数据天行数据API接口tianapipython
用户输入的内容通常是一个不那么简洁的长尾词,通过抽取关键词接口就能快速抽取其中的核心词。该接口支持指定抽取数量和词性,其中num参数为可选,默认返回10个词语,999为不限数量。当指定wordtag参数为1时,返回一个包含词性的列表,例如把一大段文本中的人名或者把一篇文章里提到的地名单独提取出来。词性代码释义请参考中文智能分词接口词性代码释义。接口信息抽取一段文本信息中的核心关键词接口地址:htt
- 搜索引擎设计:如何避免大海捞针般的信息搜索
CopyLower
架构Java学习搜索引擎
搜索引擎设计:如何避免大海捞针般的信息搜索随着互联网的发展,信息的数量呈爆炸式增长。如何在海量信息中快速、准确地找到所需信息,成为了搜索引擎设计中的核心问题。本文将详细探讨搜索引擎的设计原理和技术,从信息获取、索引建立、查询处理、结果排序到性能优化,全面解析如何避免大海捞针般的信息搜索。目录引言信息获取网页抓取数据清洗索引建立倒排索引正排索引查询处理查询解析词法分析与分词查询扩展结果排序相关性评分
- fastText 情感分类
dreampai
情感分类任务就是看一段文本,然后分辨这个人是否喜欢他们在讨论的这个东西。情感分类一个最大的挑战就是可能标记的训练集没有那么多,但是有了词嵌入,即使只有中等大小的标记的训练集,你也能构建一个不错的情感分类器image.pngimage.png假设有一个句子:“这个衣服质量不错”通过分词、去除停用词等预处理操作,得到“衣服/质量/不错”获取“衣服”、“质量”、“不错”的对应词向量(可以通过TF-IDF
- 默默背单词-231
ss的专属赫兹
1.stinky:[ˈstɪŋki]adj.发恶臭的n.全景雷达;环视雷达站stink:[stɪŋk]v.发恶臭;(非正式)讨厌透顶n.恶臭;(非正式)大吵大闹adj.臭气熏天的;讨厌的;腐败的过去式stank或stunk过去分词stunk2.gamey:adj.味道强的;勇敢的;多猎物的3.funky:[ˈfʌŋki]adj.时髦的;畏缩的;恶臭的funk:[fʌŋk]n.恐惧;怯懦;恐怖;臭味
- python 绘制词云图(自定义png形状、指定字体、颜色)最全!!!
早八起得来
pythonpython开发语言中文分词
前言本文为分总结构,有特定需求的可以查阅前部分分结构的对应板块,最后的总结不懂的可以在分板块查阅解释。分板块分别有引用的库、阅读文本、分词并设置停用词、设置png掩膜、字体设置、生成词云图,感谢您点开这篇分享,祝顺利。目录前言一、引用的库二、阅读文本(让python阅读)三、分词并设置停用词四、设置png掩膜五、字体设置六、生成词云图总结生成示例一、引用的库fromwordcloudimportW
- Elasticsearch检索原理
知知之之
Elasticsearchelasticsearch大数据搜索引擎
Elasticsearch的检索原理主要基于其内部使用的倒排索引结构,以及诸如BM25等相关性评分算法。查询解析当用户提交查询时,Elasticsearch接收和解析该请求,包括确定查询类型(如Match、Bool、Term等)和相关字段。解析过程涉及以下步骤:查询解析:Elasticsearch会对查询进行语法和语义分析。分词处理:对查询中的文本进行分词处理,将其转换为词项,以便于与倒排索引对应
- 自然语言处理系列八》中文分词》规则分词》正向最大匹配法
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据算法人工智能编程语言java自然语言处理
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列八规则分词正向最大匹配法总结自然语言处理系列八规则分词规则分词是基于字典、词库匹配的分词方法(机械分词法),其实现的主要思想是:切分语句时,将语句特定长的字符串与字典进行匹配,匹配成功就进行切分。按照匹配的方式可分为:正向最
- LSTM与文本生成
Jiang_Immortals
人工智能lstm人工智能rnn
当使用Python和Keras构建LSTM模型时,可以按照以下步骤进行简单的文本生成:准备数据集:首先,将文本数据集进行预处理,例如分词、去除标点符号、将文本转换为小写等。创建一个词汇表,将每个唯一的单词映射到一个整数值,以便进行向量化。将文本序列划分为输入序列和目标序列。例如,对于句子“IloveAI”,输入序列是“Ilove”,目标序列是“AI”。构建LSTM模型:导入必要的库,如Keras和
- es映射配置(_mapping)
小丁学Java
ElasticSearchelasticsearchjenkins大数据_mapping映射配置
文章目录1、创建映射字段2、查看映射关系1、创建映射字段PUT/索引库名/_mapping{"properties":{"字段名":{"type":"类型","index":true,"store":true,"analyzer":"分词器"}}}POST/atguigu/_mapping{"properties":{"title":{"type":"text","index":true,"ana
- 文本数据分析-(TF-IDF)(2)
红米煮粥
数据分析tf-idfpython
文章目录一、TF-IDF与jieba库介绍1.TF-IDF概述2.jieba库概述二、TF-IDF与jieba库的结合1.结合2.提取步骤三,代码实现1.导入必要的库读取文件:3.将文件路径和内容存储到DataFrame4.加载自定义词典和停用词5.分词并去除停用词TF-IDF(TermFrequency-InverseDocumentFrequency)与jieba库在文本处理领域有着紧密的联系
- 全文检索服务 ElasticSearch---------IK分词器的使用
Connection Reset
全文检索服务ElasticSearchelasticsearch全文检索搜索引擎
全文检索服务ElasticSearch其他相关:介绍入门及安装Field整合SpringBoot集群管理1.IK分词器1.1测试分词器 在添加文档时会进行分词,索引中存放的就是一个一个的词(term),当你去搜索时就是拿关键字去匹配词,最终找到词关联的文档。测试当前索引库使用的分词器:POST/_analyze{"text":"测试分词器,后边是测试内容:springcloud实战"}结果如下:
- Java 结合elasticsearch-ik分词器,实现评论的违规词汇脱敏等操作
八百码
elasticsearch大数据搜索引擎
IK分词(IKAnalyzer)是一款基于Java开发的中文分词工具,它结合了词典分词和基于统计的分词方法,旨在为用户提供高效、准确、灵活的中文分词服务。注意:需要自己建立一个敏感词库,然后自己选择方式同步到elasticsearch中,方便比对操作话不多说,直接上后台代码这个依赖是我使用的,可以结合自己的情况自己选择适用版本的相关依赖org.elasticsearchelasticsearcho
- 叶伯伯答疑之六
叶伯伯闲聊
叶黔达叶伯伯闲聊1周前【周×明问】公文式标题的事由前面通常有“关于”,但有的机关单位发的公文标题又没有“关于”。请问哪个是对的?【叶伯伯答】公文式标题中为什么要用“关于”?可不可以省略它?这是撰制公文标题要弄清的基本问题。“关于”对事由中的中心词语起关涉、介绍、提示、隔离的作用,它和事由部分的词语组成介词结构后,就改变了事由部分词语原有的语法性质。绝大多数情况下,公文标题中的关于不能省略,否则就会
- Linux 非root用户部署elasticsearch 7.17.23和ik分词器
XMYX-0
linuxelasticsearchik分词器
文章目录下载安装包环境安装JDK(三台)注解安装supervisor(三台)注解环境初始化(三台)注解部署Elasticsearch(三台)解压配置elasticsearch.yml192.168.0.1192.168.10.2192.168.10.3注解配置Supervisor管理Elasticsearch注解部署IK分词器(三台)测试IK分词器注解下载安装包首先,我们将Elasticsearc
- ngram分词机制实现index-time搜索推荐
Shaw_Young
1、ngram和index-time搜索推荐原理什么是ngramquick,5种长度下的ngramngramlength=1,quickngramlength=2,quuiicckngramlength=3,quiuicickngramlength=4,quicuickngramlength=5,quick什么是edgengramquick,anchor首字母后进行ngramqququiquicq
- 文本分析之关键词提取(TF-IDF算法)
SEVEN-YEARS
tf-idf
键词提取是自然语言处理中的一个重要步骤,可以帮助我们理解文本的主要内容。TF-IDF(TermFrequency-InverseDocumentFrequency)是一种常用的关键词提取方法,它基于词频和逆文档频率的概念来确定词语的重要性。准备工作首先,我们需要准备一些工具和库,包括Pandas、jieba(结巴分词)、sklearn等。Pandas:用于数据处理。jieba:用于中文分词。skl
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite