- ai绘画生成软件哪个好?几款好用的AI绘画软件分享!
呼酱小宝箱
随着人工智能技术的不断发展,越来越多的AI绘画生成软件被开发出来。这些软件利用深度学习技术,可以将普通照片或图像转化成具备艺术效果的画作。那么,ai绘画生成软件哪个好?首先,让我们来看一下几个常见的AI绘画生成软件,它们分别是:1、DeepDreamDeepDream是由Google开发的一款AI绘画生成软件。它通过卷积神经网络对输入的图片进行处理,从而生成出具有艺术风格的画作。DeepDream
- 生成式 AI:从 “理解” 到 “创造” 的突破
田园Coder
人工智能科普人工智能科普
1.生成式AI的定义:让AI从“识别”走向“创造”1.1什么是生成式AI生成式AI是一类能自主生成新内容(文本、图像、音频、视频等)的人工智能技术。与传统“判别式AI”(如人脸识别、垃圾邮件过滤,专注于分类和判断)不同,生成式AI的核心是“创造”——它能基于学习的规律,生成与训练数据相似但全新的内容。例如,判别式AI能判断“这是一幅梵高的画”,而生成式AI能模仿梵高的风格创作一幅全新的油画;判别式
- 青少年人工智能Python编程水平测试四级 模拟试卷9 试题解析
编程小伙伴测评网
YCL试题详解python开发语言少儿编程青少年编程算法数据结构排序算法
1、以下选项中,说法正确的是?()A、条件1and条件2,表示条件满足其中1个即可B、条件1or条件2,表示2个条件需要同时满足C、and和or不能在一个条件表达式中同时使用D、andor一般和if语句搭配使用正确答案:D试题解析:and是逻辑与,同时满足结果才满足;or是逻辑或,满足一个结果就是满足;
- 青少年人工智能Python编程水平测试四级 模拟试卷5 试题解析
编程小伙伴测评网
YCL试题详解python开发语言少儿编程青少年编程算法推荐算法
【单选题】(每题2分)1、运行下列代码后,输入4,输出的结果是?()num_1=input()num_2="3"print(num_1+num_2)A、7B
- 计算机视觉:人工智能的“眼睛”
人工智能教程
人工智能计算机视觉机器学习算法pytorchpython数据结构
前言在人工智能的众多领域中,计算机视觉(ComputerVision)无疑是其中最为引人注目的方向之一。它赋予了机器“看”的能力,使计算机能够像人类一样理解和解释视觉信息。从自动驾驶汽车到医疗影像诊断,从安防监控到虚拟现实,计算机视觉的应用场景无处不在,深刻地改变着我们的生活和工作方式。本文将深入探讨计算机视觉的核心技术、应用场景以及未来的发展趋势,帮助您全面了解这一充满活力的领域。一、计算机视觉
- 2023-11-15 自然科学学术论文=记叙文+说明文+议论文写作
不停的追梦人
一篇自然科学的实验性的原创论文,包含了前言、材料方法、结果、讨论结论,这四块主要内容。而前言部分,就是记叙文,介绍所有研究问题的由来;而材料方法和结果部分,就是说明文部分,介绍材料方法具体过程和结果部分,主要描述结果的情况详细具体情况;而讨论结论,就是议论文部分,以实验结果为论据,来证明你的分论点,而结论就是你的一篇文章总论点。
- 计算机视觉:打开机器之眼看世界
LeafyJee_
人工智能人工智能深度学习计算机视觉
计算机视觉是人工智能领域中备受关注的一部分,它的目标是赋予计算机类似于人类眼睛的功能,让机器能够感知和理解周围的世界。通过图像和视频数据,计算机视觉技术将信息转化为可理解和可操作的数据,为各种应用领域提供了强大的支持。一、计算机视觉的起源和发展计算机视觉起源于20世纪50年代,当时科学家们开始研究如何让计算机能够识别和理解图像。随着技术的不断进步,计算机视觉逐渐发展成为一门独立的学科,并广泛应用于
- 山东大学软件学院2024-2025人工智能导论期末复习简答题整理
飘去数星星
多元人工智能
写在前面给我的往年题整理引个流嘿嘿山东大学软件学院2024-2025人工智能导论期末回顾-CSDN博客个人观点:这次考试给我的感觉是意料之外又是意料之中,怎么说呢,意料之中的是这次的题跟往年题不一样,因为我们上一级的期末考试题就跟前几年的非常不一样,所以其实还是有所准备的,但是又是意料之外的,因为他考的也太不一样了,考的非常细节,还是招架不太住哈哈哈以下是我自己整理的一些知识点,仅供参考~需要的可
- 2024年第六届振我中华资金分仓方案毛振华低碳未来碳交易市场被骗无法出金,真相令人毛骨悚然!
法律咨询维权
日常生活中,经常有陌生电话号称免费拉人进股票群;网络平台上,也经常有各种股票讲课的广告。很多人抱着不花钱只是进群看看、听听课的心态,没想到却一步步陷入被骗的漩涡,损失惨重。这些股票群里所谓的“老师”首先推荐股票,取得信任后,就会推荐自行发行平台,来骗取投资者钱财。数字经济,数字体育市场,人工智能项目,数字低碳,慈善投票网站买数字的等等都是骗局,广大市民对此要提高警惕,遇到此类情况一概不要相信。若你
- 开源模型应用落地-OpenAI Agents SDK-集成多个MCP Servers与Qwen3-8B模型的创新应用探索(九)
开源技术探险家
开源模型-实际应用落地开源pythonai人工智能
一、前言在人工智能技术迅猛发展的今天,如何让AI代理更高效地理解和操作外部资源成为行业关注的焦点。模型上下文协议(MCP)应运而生,作为一项由Anthropic推出的开源标准,它为AI系统提供了一种统一的方式来发现、检索和理解数据。与此同时,OpenAIAgents通过支持多种MCP服务器的集成,为开发者提供了更大的灵活性和扩展性。结合强大的Qwen3-8B模型,其不仅具备快速响应的能力,还能在复
- 支持向量机SVM
李昊哲小课
sklearn人工智能机器学习支持向量机算法机器学习sklearn人工智能数据挖掘
支持向量机SVM一、支持向量机算法支持向量机(SupportVectorMachine,SVM)是一种用于分类和回归分析的机器学习算法。分类场景举例(更容易理解)假设现在有一个二维平面上散落着一些点,这些点分为两类,一类是红色的圆形点,另一类是蓝色的方形点。我们的任务就是找到一条直线,能够把这两类点尽可能准确地分开。支持向量机算法做的事情就和这个类似。算法核心思想它不是随便找一条能分开两类数据的直
- DeepSeek部署指南:从入门到精通
wujj_whut
热门应用c++DeepSeek嵌入式实时数据库
DeepSeek部署指南:从入门到精通引言在人工智能和深度学习领域,模型的部署是一个至关重要的环节。DeepSeek作为一款强大的深度学习框架,其部署过程不仅关系到模型的性能表现,还直接影响到实际应用的效果。本文将详细介绍DeepSeek的部署流程,涵盖从环境配置到实际应用的各个方面,旨在帮助读者全面掌握DeepSeek的部署技巧。一、DeepSeek简介DeepSeek是一款开源的深度学习框架,
- 【人工智能之深度学习】1. 深度学习基石:神经元模型与感知机的数学本质(附代码实现与收敛性证明)
AI_DL_CODE
人工智能之深度学习人工智能深度学习神经元模型感知机赫布法则深度学习基础线性可分
摘要:作为深度学习的基础单元,神经元模型与感知机承载着从生物智能到人工神经网络的桥梁作用。本文从生物神经元的工作机制出发,系统剖析数学建模过程:详解赫布法则的权重更新原理(Δwi=η·xi·y),推导McCulloch-Pitts神经元模型的数学表达(y=Θ(∑wixi−b)),重点证明感知机在linear可分情况下的收敛性——通过Novikoff定理严格推导迭代次数上界,揭示间隔γ对收敛速度的影
- 女性职业新趋势:揭秘未来高薪热门行业
氧惠爱高省
女生在职业选择上拥有广阔的空间,尤其是在当前快速发展的社会背景下,一些行业不仅成为了高薪热门,还提供了多样化的职业路径。以下是一些可能成为女生高薪热门选择的行业:➤推荐网购返利app“氧惠”,一个领隐藏优惠券+现金返利的平台。氧惠只提供领券返利链接,下单全程都在淘宝、京东、拼多多等原平台,更支持抖音、快手电商、外卖红包返利等。科技与互联网行业人工智能与大数据:随着人工智能和大数据技术的广泛应用,相
- 高斯混合模型(GMM)中的协方差矩阵类型与聚类形状关系详解
码字的字节
机器学习机器学习人工智能高斯混合模型GMM
高斯混合模型(GMM)简介高斯混合模型(GaussianMixtureModel,GMM)是概率统计与机器学习交叉领域的重要模型,其核心思想是通过多个高斯分布的线性组合来描述复杂数据分布。与单一高斯分布不同,GMM能够捕捉数据中的多模态特性,这使得它在处理真实世界非均匀分布数据时展现出独特优势。从数学形式上看,一个包含K个分量的GMM可表示为:其中(\pi_k)是第k个高斯分量的混合系数(满足(\
- 交错并联Buck+LLC变换器的建模与控制优化研究
交错并联Buck+LLC变换器的建模与控制优化研究前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。摘要本文针对宽输入电压范围(200-450V)、多电压输出(12-48V)的高效DC-DC变换系统,提出了一种基于交错并联Buck预调节器和LLC谐振变换器的两级式拓扑结构。中间母线电压设定为200V,系统输出功率为1500W,要求电压和
- 基于卷积神经网络与小波变换的医学图像超分辨率算法复现
神经网络15044
python算法cnn算法人工智能图像处理开发语言神经网络深度学习
基于卷积神经网络与小波变换的医学图像超分辨率算法复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言医学图像超分辨率技术在临床诊断和治疗规划中具有重要意义。高分辨率的医学图像能够提供更丰富的细节信息,帮助医生做出更准确的诊断。近年来,深度学习技术在图像超分辨率领域取得了显著进展。本文将复现一种结合卷积神经网络(CNN)、小波变
- 使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现
神经网络15044
算法python分类矩阵人工智能数据挖掘深度学习
使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景实例分割是计算机视觉领域的重要任务,它要求模型不仅要检测图像中的对象,还要精确地分割出每个对象的像素级掩码。近年来,基于Transformer的模型在实例分割任务上取得
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- 机器学习初学者理论初解
Mikhail_G
机器学习人工智能
大家好!为什么手机相册能自动识别人脸?为什么购物网站总能推荐你喜欢的商品?这些“智能”背后,都藏着一位隐形高手——机器学习(MachineLearning)。一、什么是机器学习?简单说,机器学习是教计算机从数据中自己找规律的技术。就像教孩子认猫:不是直接告诉他“猫有尖耳朵和胡须”,而是给他看100张猫狗照片,让他自己总结出猫的特征。传统程序vs机器学习传统程序:输入规则+数据→输出结果(例:按“温
- Embedding与向量数据库
玖月初玖
大模型应用开发基础人工智能embedding数据库
1.Embedding是什么EmbeddingModel是一种机器学习模型,它的核心任务是将离散的、高维的符号(如单词、句子、图片、用户、商品等)转换成连续的、低维的向量(称为“嵌入”或“向量表示”),并且这个向量能有效地捕捉原始符号的语义、关系或特征。1.1通俗理解EmbeddingModel是让计算机“理解”世界的核心工具,把“文字、图片、音频”等信息变成一串有意义的数字我们称之为“向量”。类
- 全球软件技术峰会 2025:聚焦大模型开发、智能运维与架构创新,共赴技术实战盛宴
向日葵也有悲伤
运维架构推荐算法数据结构大数据数据库架构
全球软件技术峰会2025:聚焦大模型开发、智能运维与架构创新,共赴技术实战盛宴在软件定义未来的时代,人工智能与数字化技术正以颠覆性力量重塑全球产业格局。2025年8月15-16日,以"全球专家、卓越智慧"为宗旨的全球软件技术峰会将盛大启幕,特邀全球近50位来自微软、谷歌、亚马逊、字节跳动等企业的技术领袖及一线实战专家,围绕大模型智能应用开发、AI与ML智能运维、软件开发智能化、架构设计与演进四大核
- AI产品经理面试宝典第42天:学习方法与产品流程解析
TGITCIC
AI产品经理一线大厂面试题产品经理AI面试大模型面试AI产品经理面试大模型产品经理面试AI产品大模型产品
具体问答:学习产品及AI知识的方法问:请谈谈您是如何学习产品及AI知识的,以及您认为哪些资源对您帮助最大答:我的学习体系包含三个维度:分层知识架构、实践验证闭环、资源筛选机制。在知识获取阶段,采用「理论-案例-工具」三级学习法:通过《人工智能:一种现代的方法》构建AI基础框架,用TensorFlow官方文档掌握工程实现,结合《启示录》《俞军产品方法论》理解产品逻辑。实践环节采用「项目反哺」模式,例
- 2023年第10期(NeuroImage):DomainATM:多中心医学图像数据标准化工具箱
影浮科技ImageFlow
基本信息1.标题:DomainATM:Domainadaptationtoolboxformedicaldataanalysis.2.期刊:NeuroImage3.IF/JCR/分区:7.4/Q1/中科院一区4.DOI:10.1016/j.neuroimage.2023.119863目录1、导读2、背景动机3、研究目的4、工具箱介绍5、测试试验6、局限不足1导读域适应(DA)是基于机器学习的现代医
- 重磅!LM Studio AI编程全面免费
从今天起,LMStudio在家和工作中均可免费使用。查看更新后的条款了解详情。我们的隐私政策保持不变,您可以在此处阅读。在家免费使用,现在也可在工作场所使用LMStudio一直以来都免费供个人使用。这源于我们秉持的根本信念:人工智能应该让人们在自己的机器上轻松访问,无需依赖任何外部资源,并且完全保护隐私。此前,LMStudio应用条款规定,公司或组织若要使用LMStudio,必须联系我们并获得单独
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- Self-Consistency:跨学科一致性的理论与AI推理的可靠性基石
大千AI助手
人工智能Python#Prompt人工智能机器学习神经网络算法大模型幻觉LLM
本文综合其在逻辑学、心理学及人工智能领域的核心定义、技术实现与前沿进展来对Self-Consistency(自洽性)进行系统性解析。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与跨学科内涵基础概念逻辑学定义:指理论或系统内部逻辑自洽,无矛盾或悖论。例如物理理论中,狭义相对论的速度变换
- 迁移学习:知识复用的智能迁移引擎 | 从理论到实践的跨域赋能范式
大千AI助手
人工智能Python#OTHER迁移学习人工智能机器学习算法神经网络大模型迁移
让AI像人类一样“举一反三”的通用学习框架本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与基本概念迁移学习(TransferLearning)是一种机器学习范式,其核心思想是:将源领域(SourceDomain)学到的知识迁移到目标领域(TargetDomain),以提升目标任务的性能
- 人工智能学习指南:从菜鸟到大神的进击之路
橡晟
人工智能深度学习计算机视觉算法学习python
人工智能学习指南:从菜鸟到大神的进击之路前言:别慌,AI没那么可怕嘿!想学人工智能?恭喜你,你已经比90%的人更有眼光了!很多人一听到"人工智能"就开始头疼,仿佛这是什么高深莫测的巫术。其实不然,AI就像学做饭一样——刚开始可能会糊锅,但掌握了方法,你也能做出一桌好菜!目录第一章:认清现实,别被忽悠第二章:建立知识地图第三章:实战为王第四章:自检清单——你真的学会了吗?第五章:进阶之路结语:成为A
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一