蚁群算法的基本原理

这种算法有别于传统编程模式,其优势在于,避免了冗长的编程和筹划,程序本身是基于一定规则的随机运行来寻找最佳配置。也就是说,当程序最开始找到目标的时候,路径几乎不可能是最优的,甚至可能是包含了无数错误的选择而极度冗长的。但是,程序可以通过蚂蚁寻找食物的时候的信息素原理,不断地去修正原来的路线,使整个路线越来越短,也就是说,程序执行的时间越长,所获得的路径就越可能接近最优路径。这看起来很类似与我们所见的由无数例子进行归纳概括形成最佳路径的过程。实际上好似是程序的一个自我学习的过程。

这种优化过程的本质在于:

  选择机制:信息素越多的路径,被选择的概率越大。

  更新机制:路径上面的信息素会随蚂蚁的经过而增长,而且同时也随时间的推移逐渐挥发消失。

  协调机制:蚂蚁间实际上是通过分泌物来互相通信、协同工作的。

  蚁群算法正是充分利用了选择、更新和协调的优化机制,即通过个体之间的信息交流与相互协作最终找到最优解,使它具有很强的发现较优解的能力。

基于以上机制编写的程序的核心代码可能不过上百行,却完成了类似于学习的过程。原因就是所谓的自组织理论,简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,但是࿰

你可能感兴趣的:(美赛国赛,算法)