是一个由链表结构构成的无界阻塞TransferQueue队列。相对于其他阻塞队列,多了 tryTransfer 和 transfer 方法。
LinkedTransferQueue是LinkedBlockingQueue、SynchronousQueue(公平模式)、ConcurrentLinkedQueue三者的集合体,它综合了这三者的方法,并且提供了更加高效的实现方式。
LinkedTransferQueue使用了一个叫做dual data structure
的数据结构,或者叫做dual queue
,译为双重数据结构或者双重队列。
双重队列是什么意思呢?
放取元素使用同一个队列,队列中的节点具有两种模式,一种是数据节点,一种是非数据节点。
放元素时先跟队列头节点对比,如果头节点是非数据节点,就让他们匹配,如果头节点是数据节点,就生成一个数据节点放在队列尾端(入队)。
取元素时也是先跟队列头节点对比,如果头节点是数据节点,就让他们匹配,如果头节点是非数据节点,就生成一个非数据节点放在队列尾端(入队)。
用图形来表示就是下面这样:
不管是放元素还是取元素,都先跟头节点对比,如果二者模式不一样就匹配它们,如果二者模式一样,就入队。
同一时刻队列中只会存储一种类型的节点
通俗的讲就是:队列中的节点有两种状态;还未被消费(数据节点),或者已经被消费(非数据节点)。
put时,与头节点对比;如果是非数据节点(说明此节点已经被take消费了),那么就将其匹配(删除);如果是数据节点(说明前面还有节点未被消费),那么就将新节点放到tail
take时,与头节点对比;如果是数据节点(说明此节点)???
public class LinkedTransferQueue extends AbstractQueue implements TransferQueue, java.io.Serializable{
// 序列号
private static final long serialVersionUID = -3223113410248163686L;
// 是否是多核
private static final boolean MP = Runtime.getRuntime().availableProcessors() > 1;
// 自旋次数
private static final int FRONT_SPINS = 1 << 7;
// 前驱节点正在处理,当前节点需要自旋的次数
private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
// 容忍清除节点失败次数的阈值
static final int SWEEP_THRESHOLD = 32;
// 头节点
transient volatile Node head;
// 尾节点
private transient volatile Node tail;
private transient volatile int sweepVotes;
// 放取元素的几种方式:
// 立即返回,用于非超时的poll()和tryTransfer()方法中
private static final int NOW = 0; // for untimed poll, tryTransfer
// 异步,不会阻塞,用于放元素时,因为内部使用无界单链表存储元素,不会阻塞放元素的过程
private static final int ASYNC = 1; // for offer, put, add
// 同步,调用的时候如果没有匹配到会阻塞直到匹配到为止
private static final int SYNC = 2; // for transfer, take
// 超时,用于有超时的poll()和tryTransfer()方法中
private static final int TIMED = 3; // for timed poll, tryTransfer
private static final sun.misc.Unsafe UNSAFE;
private static final long headOffset;
private static final long tailOffset;
private static final long sweepVotesOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class> k = LinkedTransferQueue.class;
headOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("head"));
tailOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("tail"));
sweepVotesOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("sweepVotes"));
} catch (Exception e) {
throw new Error(e);
}
}
}
public LinkedTransferQueue() {}
public LinkedTransferQueue(Collection extends E> c) {
this();
addAll(c);
}
// CAS methods for fields
// 1、CAS设置tail
private boolean casTail(Node cmp, Node val) {
return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
}
// 2、CAS设置head
private boolean casHead(Node cmp, Node val) {
return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
}
// 3、CAS设置sweepVotes
private boolean casSweepVotes(int cmp, int val) {
return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
}
xfer(E e, boolean haveData, int how, long nanos)的参数分别是:
(1)e表示元素;
(2)haveData表示是否是数据节点,
(3)how表示放取元素的方式,上面提到的四种,NOW、ASYNC、SYNC、TIMED;
(4)nanos表示超时时间;
public boolean add(E e) {
xfer(e, true, ASYNC, 0);
return true;
}
public boolean offer(E e) {
xfer(e, true, ASYNC, 0);
return true;
}
public boolean offer(E e, long timeout, TimeUnit unit) {
xfer(e, true, ASYNC, 0);
return true;
}
public void put(E e) {
xfer(e, true, ASYNC, 0);
}
public boolean remove(Object o) {
return findAndRemove(o);
}
public E poll() {
return xfer(null, false, NOW, 0);
}
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E e = xfer(null, false, TIMED, unit.toNanos(timeout));
if (e != null || !Thread.interrupted())
return e;
throw new InterruptedException();
}
public E take() throws InterruptedException {
E e = xfer(null, false, SYNC, 0);
if (e != null)
return e;
Thread.interrupted();
throw new InterruptedException();
}
请注意第二个参数,都是true,也就是这三个方法其实也是放元素的方法
public void transfer(E e) throws InterruptedException {
if (xfer(e, true, SYNC, 0) != null) {
Thread.interrupted(); // failure possible only due to interrupt
throw new InterruptedException();
}
}
public boolean tryTransfer(E e) {
return xfer(e, true, NOW, 0) == null;
}
public boolean tryTransfer(E e, long timeout, TimeUnit unit) throws InterruptedException {
if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
return true;
if (!Thread.interrupted())
return false;
throw new InterruptedException();
}
// haveData : put是true; take是false
private E xfer(E e, boolean haveData, int how, long nanos) {
// 不允许放入空元素
if (haveData && (e == null))
throw new NullPointerException();
Node s = null; // the node to append, if needed
retry:
// 外层循环,自旋,失败就重试
for (;;) {
// 下面这个for循环用于控制匹配的过程
// 同一时刻队列中只会存储一种类型的节点
// 从头节点开始尝试匹配,如果头节点被其它线程先一步匹配了,就再尝试其下一个,直到匹配到为止,或者到队列中没有元素为止
for (Node h = head, p = h; p != null;) { // 找到第一个匹配的节点
boolean isData = p.isData; //p节点的模式
Object item = p.item; //p节点的值
// p没有被匹配到
if (item != p && (item != null) == isData) {
// 如果两者模式一样,则不能匹配,跳出循环后尝试入队
// isData=haveData=true,put和data; isData=haveData=false,take和非data
if (isData == haveData)
break;
// 如果两者模式不一样,则尝试匹配
// 把p的值设置为e(如果是取元素则e是null,如果是放元素则e是元素值)
if (p.casItem(item, e)) {
// 匹配成功
// for里面的逻辑比较复杂,用于控制多线程同时放取元素时出现竞争的情况的
for (Node q = p; q != h;) {
// 进入到这里可能是头节点已经被匹配,然后p会变成h的下一个节点
Node n = q.next;
// 如果head还没变,就把它更新成新的节点
// 并把它删除(forgetNext()会把它的next设为自己,也就是从单链表中删除了)
// 这时为什么要把head设为n呢?因为到这里了,肯定head本身已经被匹配掉了
// 而上面的p.casItem()又成功了,说明p也被当前这个元素给匹配掉了
// 所以需要把它们俩都出队列,让其它线程可以从真正的头开始,不用重复检查了
if (head == h && casHead(h, n == null ? q : n)) {
h.forgetNext();
break; //跳出循环
} // advance and retry
// 如果新的头节点为空,或者其next为空,或者其next未匹配,就重试
if ((h = head) == null ||
(q = h.next) == null || !q.isMatched())
break; // unless slack < 2
}
// 唤醒p中等待的线程
LockSupport.unpark(p.waiter);
// 并返回匹配到的元素
return LinkedTransferQueue.cast(item);
}
}
// p已经被匹配了或者尝试匹配的时候失败了
// 也就是其它线程先一步匹配了p
// 这时候又分两种情况,p的next还没来得及修改,p的next指向了自己
// 如果p的next已经指向了自己,就重新取head重试,否则就取其next重试
Node n = p.next;
p = (p != n) ? n : (h = head); // Use head if p offlist
}
// 到这里肯定是队列中存储的节点类型和自己一样
// 或者队列中没有元素了
// 就入队(不管放元素还是取元素都得入队)
// 入队又分成四种情况:
// NOW,立即返回,没有匹配到立即返回,不做入队操作
// ASYNC,异步,元素入队但当前线程不会阻塞(相当于无界LinkedBlockingQueue的元素入队)
// SYNC,同步,元素入队后当前线程阻塞,等待被匹配到
// TIMED,有超时,元素入队后等待一段时间被匹配,时间到了还没匹配到就返回元素本身
// 如果 不是立即返回
if (how != NOW) { // No matches available
// 新建s节点
if (s == null)
s = new Node(e, haveData);
// 尝试入队
Node pred = tryAppend(s, haveData);
// 入队失败,重试
if (pred == null)
continue retry; // lost race vs opposite mode
// 如果不是异步(同步或者有超时)
// 就等待被匹配
if (how != ASYNC)
return awaitMatch(s, pred, e, (how == TIMED), nanos);
}
return e; // not waiting
}
}
private Node tryAppend(Node s, boolean haveData) {
// 从tail开始遍历,把s放到链表尾端
for (Node t = tail, p = t;;) { // move p to last node and append
Node n, u; // temps for reads of next & tail
// 如果首尾都是null,说明链表中还没有元素
if (p == null && (p = head) == null) {
// 就让首节点指向s
// 注意,这里插入第一个元素的时候tail指针并没有指向s
if (casHead(null, s))
return s; // initialize
}
// 如果p无法处理,则返回null
// 这里无法处理的意思是,p和s节点的类型不一样,不允许s入队
// 比如,其它线程先入队了一个数据节点,这时候要入队一个非数据节点,就不允许,
// 队列中所有的元素都要保证是同一种类型的节点
// 返回null后外面的方法会重新尝试匹配重新入队等
else if (p.cannotPrecede(haveData))
return null; // lost race vs opposite mode
// 如果p的next不为空,说明不是最后一个节点
// 则让p重新指向最后一个节点
else if ((n = p.next) != null) // not last; keep traversing
p = p != t && t != (u = tail) ? (t = u) : // stale tail
(p != n) ? n : null; // restart if off list
// 如果CAS更新s为p的next失败
// 则说明有其它线程先一步更新到p的next了
// 就让p指向p的next,重新尝试让s入队
else if (!p.casNext(null, s))
p = p.next; // re-read on CAS failure
// 到这里说明s成功入队了
// 如果p不等于t,就更新tail指针
// 还记得上面插入第一个元素时tail指针并没有指向新元素吗?
// 这里就是用来更新tail指针的
else {
if (p != t) { // update if slack now >= 2
while ((tail != t || !casTail(t, s)) &&
(t = tail) != null &&
(s = t.next) != null && // advance and retry
(s = s.next) != null && s != t);
}
return p; // 返回p,即s的前一个元素
}
}
}
private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
// 如果是有超时的,计算其超时时间
final long deadline = timed ? System.nanoTime() + nanos : 0L;
// 当前线程
Thread w = Thread.currentThread();
// 自旋次数
int spins = -1; // initialized after first item and cancel checks
// 随机数,随机让一些自旋的线程让出CPU
ThreadLocalRandom randomYields = null; // bound if needed
for (;;) {
Object item = s.item;
// 如果s元素的值不等于e,说明它被匹配到了
if (item != e) { // matched
// assert item != s;
// 把s的item更新为s本身
// 并把s中的waiter置为空
s.forgetContents(); // avoid garbage
// 返回匹配到的元素
return LinkedTransferQueue.cast(item);
}
// 如果当前线程中断了,或者有超时的到期了
// 就更新s的元素值指向s本身
if ((w.isInterrupted() || (timed && nanos <= 0)) &&
s.casItem(e, s)) { // cancel
// 尝试解除s与其前一个节点的关系
// 也就是删除s节点
unsplice(pred, s);
// 返回元素的值本身,说明没匹配到
return e;
}
// 如果自旋次数小于0,就计算自旋次数
if (spins < 0) { // establish spins at/near front
// spinsFor()计算自旋次数
// 如果前面有节点未被匹配就返回0
// 如果前面有节点且正在匹配中就返回一定的次数,等待
if ((spins = spinsFor(pred, s.isData)) > 0)
// 初始化随机数
randomYields = ThreadLocalRandom.current();
}
// 还有自旋次数就减1,并随机让出CPU
else if (spins > 0) { // spin
--spins;
if (randomYields.nextInt(CHAINED_SPINS) == 0)
Thread.yield(); // occasionally yield
}
// 更新s的waiter为当前线程
else if (s.waiter == null) {
s.waiter = w; // request unpark then recheck
}
// 如果有超时,计算超时时间,并阻塞一定时间
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos > 0L)
LockSupport.parkNanos(this, nanos);
}
// 不是超时的,直接阻塞,等待被唤醒
// 唤醒后进入下一次循环,走第一个if的逻辑就返回匹配的元素了
else {
LockSupport.park(this);
}
}
}
这三个方法里的内容特别复杂,很大一部分代码都是在控制线程安全,各种CAS,我们这里简单描述一下大致的逻辑:
(1)来了一个元素,我们先查看队列头的节点,是否与这个元素的模式一样;
(2)如果模式不一样,就尝试让他们匹配,如果头节点被别的线程先匹配走了,就尝试与头节点的下一个节点匹配,如此一直往后,直到匹配到或到链表尾为止;
(3)如果模式一样,或者到链表尾了,就尝试入队;
(4)入队的时候有可能链表尾修改了,那就尾指针后移,再重新尝试入队,依此往复;
(5)入队成功了,就自旋或阻塞,阻塞了就等待被其它线程匹配到并唤醒;
(6)唤醒之后进入下一次循环就匹配到元素了,返回匹配到的元素;
(7)是否需要入队及阻塞有四种情况:
a)NOW,立即返回,没有匹配到立即返回,不做入队操作 对应的方法有:poll()、tryTransfer(e)
b)ASYNC,异步,元素入队但当前线程不会阻塞(相当于无界LinkedBlockingQueue的元素入队) 对应的方法有:add(e)、offer(e)、put(e)、offer(e, timeout, unit)
c)SYNC,同步,元素入队后当前线程阻塞,等待被匹配到 对应的方法有:take()、transfer(e)
d)TIMED,有超时,元素入队后等待一段时间被匹配,时间到了还没匹配到就返回元素本身 对应的方法有:poll(timeout, unit)、tryTransfer(e, timeout, unit)
(1)LinkedTransferQueue可以看作LinkedBlockingQueue、SynchronousQueue(公平模式)、ConcurrentLinkedQueue三者的集合体;
(2)LinkedTransferQueue的实现方式是使用一种叫做
双重队列
的数据结构;(3)不管是取元素还是放元素都会入队;
(4)先尝试跟头节点比较,如果二者模式不一样,就匹配它们,组成CP,然后返回对方的值;
(5)如果二者模式一样,就入队,并自旋或阻塞等待被唤醒;
(6)至于是否入队及阻塞有四种模式,NOW、ASYNC、SYNC、TIMED;
(7)LinkedTransferQueue全程都没有使用synchronized、重入锁等比较重的锁,基本是通过 自旋+CAS 实现;
(8)对于入队之后,先自旋一定次数后再调用LockSupport.park()或LockSupport.parkNanos阻塞;
LinkedTransferQueue与SynchronousQueue(公平模式)有什么异同呢?
(1)在java8中两者的实现方式基本一致,都是使用的双重队列;
(2)前者完全实现了后者,但比后者更灵活;
(3)后者不管放元素还是取元素,如果没有可匹配的元素,所在的线程都会阻塞;
(4)前者可以自己控制放元素是否需要阻塞线程,比如使用四个添加元素的方法就不会阻塞线程,只入队元素,使用transfer()会阻塞线程;
(5)取元素两者基本一样,都会阻塞等待有新的元素进入被匹配到;
// 类型转换,将object转换成 queue 中节点的类型
static E cast(Object item) {
// assert item == null || item.getClass() != Node.class;
return (E) item;
}
// 计算自旋次数
private static int spinsFor(Node pred, boolean haveData) {
if (MP && pred != null) {
if (pred.isData != haveData) // phase change
return FRONT_SPINS + CHAINED_SPINS;
if (pred.isMatched()) // probably at front
return FRONT_SPINS;
if (pred.waiter == null) // pred apparently spinning
return CHAINED_SPINS;
}
return 0;
}
// 返回p的后继节点,或者head(如果p.next=p)
final Node succ(Node p) {
Node next = p.next;
return (p == next) ? head : next;
}
// 返回给定模式的第一个不匹配节点,如果没有,则返回null
// 被isEmpty()、hasWaitingConsumer() 方法调用
private Node firstOfMode(boolean isData) {
for (Node p = head; p != null; p = succ(p)) {
if (!p.isMatched())
return (p.isData == isData) ? p : null;
}
return null;
}
final Node firstDataNode() {
for (Node p = head; p != null;) {
Object item = p.item;
if (p.isData) {
if (item != null && item != p)
return p;
}
else if (item == null)
break;
if (p == (p = p.next))
p = head;
}
return null;
}
private E firstDataItem() {
for (Node p = head; p != null; p = succ(p)) {
Object item = p.item;
if (p.isData) {
if (item != null && item != p)
return LinkedTransferQueue.cast(item);
}
else if (item == null)
return null;
}
return null;
}
public E peek() {
return firstDataItem();
}
private int countOfMode(boolean data) {
int count = 0;
for (Node p = head; p != null; ) {
if (!p.isMatched()) {
if (p.isData != data)
return 0;
if (++count == Integer.MAX_VALUE) // saturated
break;
}
Node n = p.next;
if (n != p)
p = n;
else {
count = 0;
p = head;
}
}
return count;
}
public Iterator iterator() {
return new Itr();
}
public Spliterator spliterator() {
return new LTQSpliterator(this);
}
final void unsplice(Node pred, Node s) {
s.forgetContents(); // forget unneeded fields
if (pred != null && pred != s && pred.next == s) {
Node n = s.next;
if (n == null ||
(n != s && pred.casNext(s, n) && pred.isMatched())) {
for (;;) { // check if at, or could be, head
Node h = head;
if (h == pred || h == s || h == null)
return; // at head or list empty
if (!h.isMatched())
break;
Node hn = h.next;
if (hn == null)
return; // now empty
if (hn != h && casHead(h, hn))
h.forgetNext(); // advance head
}
if (pred.next != pred && s.next != s) { // recheck if offlist
for (;;) { // sweep now if enough votes
int v = sweepVotes;
if (v < SWEEP_THRESHOLD) {
if (casSweepVotes(v, v + 1))
break;
}
else if (casSweepVotes(v, 0)) {
sweep();
break;
}
}
}
}
}
}
private void sweep() {
for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
if (!s.isMatched())
// Unmatched nodes are never self-linked
p = s;
else if ((n = s.next) == null) // trailing node is pinned
break;
else if (s == n) // stale
// No need to also check for p == s, since that implies s == n
p = head;
else
p.casNext(s, n);
}
}
/**
* Main implementation of remove(Object)
*/
private boolean findAndRemove(Object e) {
if (e != null) {
for (Node pred = null, p = head; p != null; ) {
Object item = p.item;
if (p.isData) {
if (item != null && item != p && e.equals(item) &&
p.tryMatchData()) {
unsplice(pred, p);
return true;
}
}
else if (item == null)
break;
pred = p;
if ((p = p.next) == pred) { // stale
pred = null;
p = head;
}
}
}
return false;
}
public int drainTo(Collection super E> c) {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
int n = 0;
for (E e; (e = poll()) != null;) {
c.add(e);
++n;
}
return n;
}
public int drainTo(Collection super E> c, int maxElements) {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
int n = 0;
for (E e; n < maxElements && (e = poll()) != null;) {
c.add(e);
++n;
}
return n;
}
public boolean isEmpty() {
for (Node p = head; p != null; p = succ(p)) {
if (!p.isMatched())
return !p.isData;
}
return true;
}
public boolean hasWaitingConsumer() {
return firstOfMode(false) != null;
}
public int size() {
return countOfMode(true);
}
public int getWaitingConsumerCount() {
return countOfMode(false);
}
public boolean contains(Object o) {
if (o == null)
return false;
for (Node p = head; p != null; p = succ(p)) {
Object item = p.item;
if (p.isData) {
if (item != null && item != p && o.equals(item))
return true;
}
else if (item == null)
break;
}
return false;
}
public int remainingCapacity() {
return Integer.MAX_VALUE;
}
static final class Node {
final boolean isData; // 表示存放数据还是获取数据
volatile Object item; // 存放数据是item有值
volatile Node next; // next节点
volatile Thread waiter; // 等待线程,不等时为null
// CAS methods for fields
final boolean casNext(Node cmp, Node val) {
return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
}
final boolean casItem(Object cmp, Object val) {
// assert cmp == null || cmp.getClass() != Node.class;
return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
}
/**
* Constructs a new node. Uses relaxed write because item can
* only be seen after publication via casNext.
*/
Node(Object item, boolean isData) {
UNSAFE.putObject(this, itemOffset, item); // relaxed write
this.isData = isData;
}
/**
* Links node to itself to avoid garbage retention. Called
* only after CASing head field, so uses relaxed write.
*/
final void forgetNext() {
UNSAFE.putObject(this, nextOffset, this);
}
final void forgetContents() {
UNSAFE.putObject(this, itemOffset, this);
UNSAFE.putObject(this, waiterOffset, null);
}
final boolean isMatched() {
Object x = item;
return (x == this) || ((x == null) == isData);
}
final boolean isUnmatchedRequest() {
return !isData && item == null;
}
final boolean cannotPrecede(boolean haveData) {
boolean d = isData;
Object x;
return d != haveData && (x = item) != this && (x != null) == d;
}
final boolean tryMatchData() {
// assert isData;
Object x = item;
if (x != null && x != this && casItem(x, null)) {
LockSupport.unpark(waiter);
return true;
}
return false;
}
private static final long serialVersionUID = -3375979862319811754L;
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long itemOffset;
private static final long nextOffset;
private static final long waiterOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class> k = Node.class;
itemOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("item"));
nextOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("next"));
waiterOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("waiter"));
} catch (Exception e) {
throw new Error(e);
}
}
}