数据预处理 ToTensor和Normalize

使用机器学习和深度学习对数据进行训练前,需要对数据进行预处理,本文记录下,与数据预处理相关过程。

数据预处理两个操作:

transform.ToTensor(),
transform.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))

关于对这两个的操作理解均来自文章参考

https://zhuanlan.zhihu.com/p/414242338

1、transform.ToTensor() 功能

  1. 转变一个PIL图片或者np.array转变成单精度的tensor
  2. 将输入的数据shape W,H,C ——> C,H,W
  3. 数据归一化,由[0,255] -> [0,1]。(有时用不到)
    注意:自定义图片数组,数据类型一定要转为‘uint8’,不然transforms.ToTensor()不会归一化。uint8无符号整型,范围是[0,255]。非图片数据可以不转变类型。
x = np.array(x,dtype='uint8')
y = transforms.Totensor()(x)

示例实现:

import torch
import numpy as np
from torchvision import transforms
import cv2
#自定义图片数组,数据类型一定要转为‘uint8’,不然transforms.ToTensor()不会归一化
data = np.array([
                [[1,1,1],[1,1,1],[1,1,1],[1,1,1],[1,1,1]],
                [[2,2,2],[2,2,2],[2,2,2],[2,2,2],[2,2,2]],
                [[3,3,3],[3,3,3],[3,3,3],[3,3,3],[3,3,3]],
                [[4,4,4],[4,4,4],[4,4,4],[4,4,4],[4,4,4]],
                [[5,5,5],[5,5,5],[5,5,5],[5,5,5],[5,5,5]]
        ],dtype='uint8')
print(data)
print(data.shape)   #(5,5,3)
data = transforms.ToTensor()(data)
print(data)
print(data.shape)	#(3,5,5)

输出:
tensor([[[0.0039, 0.0039, 0.0039, 0.0039, 0.0039],
         [0.0078, 0.0078, 0.0078, 0.0078, 0.0078],
         [0.0118, 0.0118, 0.0118, 0.0118, 0.0118],
         [0.0157, 0.0157, 0.0157, 0.0157, 0.0157],
         [0.0196, 0.0196, 0.0196, 0.0196, 0.0196]],

        [[0.0039, 0.0039, 0.0039, 0.0039, 0.0039],
         [0.0078, 0.0078, 0.0078, 0.0078, 0.0078],
         [0.0118, 0.0118, 0.0118, 0.0118, 0.0118],
         [0.0157, 0.0157, 0.0157, 0.0157, 0.0157],
         [0.0196, 0.0196, 0.0196, 0.0196, 0.0196]],

        [[0.0039, 0.0039, 0.0039, 0.0039, 0.0039],
         [0.0078, 0.0078, 0.0078, 0.0078, 0.0078],
         [0.0118, 0.0118, 0.0118, 0.0118, 0.0118],
         [0.0157, 0.0157, 0.0157, 0.0157, 0.0157],
         [0.0196, 0.0196, 0.0196, 0.0196, 0.0196]]])

2、transforms.Normalize() 功能
计算同一维度数据的平均值和标准差,将该维度的每个值减去平均值再除以标准差。使每一维数据符合标准正态分布,即均值为0,标准差为1,并非[-1,1],使模型更容易收敛。
x = (x - mean) / std

计算均值和标准差:

import torch
import numpy as np
from torchvision import transforms

Input_dimension = 3 

def Get_Mean_Std(data,Input_dimension = 9):
    C, H, W = data.shape[:3]
    data = data.view(C, -1)
    print(data.shape)
    #展平后,w,h属于第一维度,对他们求和求标准差
    channel_mean = data.mean(1)
    channel_std = data.std(1)
    print(channel_mean, channel_std)
    
    return channel_mean, channel_std

# 这里以上述创建的单数据为例子
data = np.array([
                [[1,1,1],[1,1,1],[1,1,1],[1,1,1],[1,1,1]],
                [[2,2,2],[2,2,2],[2,2,2],[2,2,2],[2,2,2]],
                [[3,3,3],[3,3,3],[3,3,3],[3,3,3],[3,3,3]],
                [[4,4,4],[4,4,4],[4,4,4],[4,4,4],[4,4,4]],
                [[5,5,5],[5,5,5],[5,5,5],[5,5,5],[5,5,5]]
        ],dtype='uint8')  #不用uint8时,进行ToTensor不进行归一化

data = np.array(data)
data = transforms.ToTensor()(data)  #数据转为Tensor,通道进行变换
print(data.shape)
channel_mean, channel_std = Get_Mean_Std(data,Input_dimension)
x = transforms.Normalize(channel_mean, channel_std)(data)

计算一批数据的mean和std:

import torch
import numpy as np
from torchvision import transforms

# 这里以上述创建的单数据为例子
data = np.array([
                [[1,1,1],[1,1,1],[1,1,1],[1,1,1],[1,1,1]],
                [[2,2,2],[2,2,2],[2,2,2],[2,2,2],[2,2,2]],
                [[3,3,3],[3,3,3],[3,3,3],[3,3,3],[3,3,3]],
                [[4,4,4],[4,4,4],[4,4,4],[4,4,4],[4,4,4]],
                [[5,5,5],[5,5,5],[5,5,5],[5,5,5],[5,5,5]]
        ],dtype='uint8')

#将数据转为C,W,H,并归一化到[0,1]
data = transforms.ToTensor()(data)
# 需要对数据进行扩维,增加batch维度
data = torch.unsqueeze(data,0)

nb_samples = 0.
#创建3维的空列表
channel_mean = torch.zeros(3)
channel_std = torch.zeros(3)
print(data.shape)
N, C, H, W = data.shape[:4]
data = data.view(N, C, -1)     #将w,h维度的数据展平,为batch,channel,data,然后对三个维度上的数分别求和和标准差
print(data.shape)
#展平后,w,h属于第二维度,对他们求平均,sum(0)为将同一纬度的数据累加
channel_mean += data.mean(2).sum(0)  
#展平后,w,h属于第二维度,对他们求标准差,sum(0)为将同一纬度的数据累加
channel_std += data.std(2).sum(0)
#获取所有batch的数据,这里为1
nb_samples += N
#获取同一batch的均值和标准差
channel_mean /= nb_samples
channel_std /= nb_samples
print(channel_mean, channel_std)

得到均值和标准差之后自己实现标准化:

data = np.array([
                [[1,1,1],[1,1,1],[1,1,1],[1,1,1],[1,1,1]],
                [[2,2,2],[2,2,2],[2,2,2],[2,2,2],[2,2,2]],
                [[3,3,3],[3,3,3],[3,3,3],[3,3,3],[3,3,3]],
                [[4,4,4],[4,4,4],[4,4,4],[4,4,4],[4,4,4]],
                [[5,5,5],[5,5,5],[5,5,5],[5,5,5],[5,5,5]]
        ],dtype='uint8')
data = transforms.ToTensor()(data)
for i in range(3):
    data[i,:,:] = (data[i,:,:] - channel_mean[i]) / channel_std[i]
print(data)

输出:
tensor([[[-1.3856, -1.3856, -1.3856, -1.3856, -1.3856],
         [-0.6928, -0.6928, -0.6928, -0.6928, -0.6928],
         [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
         [ 0.6928,  0.6928,  0.6928,  0.6928,  0.6928],
         [ 1.3856,  1.3856,  1.3856,  1.3856,  1.3856]],

        [[-1.3856, -1.3856, -1.3856, -1.3856, -1.3856],
         [-0.6928, -0.6928, -0.6928, -0.6928, -0.6928],
         [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
         [ 0.6928,  0.6928,  0.6928,  0.6928,  0.6928],
         [ 1.3856,  1.3856,  1.3856,  1.3856,  1.3856]],

        [[-1.3856, -1.3856, -1.3856, -1.3856, -1.3856],
         [-0.6928, -0.6928, -0.6928, -0.6928, -0.6928],
         [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000],
         [ 0.6928,  0.6928,  0.6928,  0.6928,  0.6928],
         [ 1.3856,  1.3856,  1.3856,  1.3856,  1.3856]]])

官方方法实现:

data = np.array([
                [[1,1,1],[1,1,1],[1,1,1],[1,1,1],[1,1,1]],
                [[2,2,2],[2,2,2],[2,2,2],[2,2,2],[2,2,2]],
                [[3,3,3],[3,3,3],[3,3,3],[3,3,3],[3,3,3]],
                [[4,4,4],[4,4,4],[4,4,4],[4,4,4],[4,4,4]],
                [[5,5,5],[5,5,5],[5,5,5],[5,5,5],[5,5,5]]
        ],dtype='uint8')
data = transforms.ToTensor()(data)
data = transforms.Normalize(channel_mean, channel_std)(data)
print(data)

3、StandardScaler工具
Sklearn中提供的标准化工具,针对每个特征维度进行去均值和方差归一化。处理后也使得经过处理的数据符合标准正态分布,即均值为0,标准差为1。该方法不需要输入的数据是tensor。
参考博文

https://long97.blog.csdn.net/article/details/90549391?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-1.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-1.pc_relevant_default&utm_relevant_index=1

import numpy as np
from sklearn.preprocessing import StandardScaler

def standartize(data):
    H, W, C = data.shape[:3]
    newX = np.reshape(data, (-1,C))    #这是相当于变成了 X.shape[0] * X.shape[1] * X.shape[2] 行, 1列。 下面的这个StandardScaler只能处理2维以下的数据。                          
    scaler = StandardScaler().fit(newX)    # Compute the mean and std to be used for later scaling.     得到平均数和标准差,先保存起来。      
    newX = scaler.transform(newX)    #   Perform standardization by centering and scaling.                              
    data = np.reshape(newX, (H, W, C))    #再给形状转变回去
    return data

data = np.array([
                [[1,1,1],[1,1,1],[1,1,1],[1,1,1],[1,1,1]],
                [[2,2,2],[2,2,2],[2,2,2],[2,2,2],[2,2,2]],
                [[3,3,3],[3,3,3],[3,3,3],[3,3,3],[3,3,3]],
                [[4,4,4],[4,4,4],[4,4,4],[4,4,4],[4,4,4]],
                [[5,5,5],[5,5,5],[5,5,5],[5,5,5],[5,5,5]]
        ]) 

data = standartize(data)
print(data)

你可能感兴趣的:(深度学习,图像处理,深度学习)