代码随想录算法训练营day50|123.买卖股票的最佳时机III|188.买卖股票的最佳时机IV

123.买卖股票的最佳时机III

力扣题目链接

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:
  • 输入:prices = [3,3,5,0,0,3,1,4]
  • 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。
  • 示例 2:
  • 输入:prices = [1,2,3,4,5]
  • 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
  • 示例 3:
  • 输入:prices = [7,6,4,3,1]
  • 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。
  • 示例 4:
  • 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5

  • 0 <= prices[i] <= 10^5

  • 动态规划

1.确定dp数组(dp table)以及下标的含义

1——第一次持有股票

2——第一次不持有股票

3——第二次持有股票

4——第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

2.确定递推公式

持有操作

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

不持有操作

dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出,当天买入,当天卖出,所以dp[0][2] = 0;

第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

4.遍历顺序

前向后

5.打印dp数组

以输入[1,2,3,4,5]为例

代码随想录算法训练营day50|123.买卖股票的最佳时机III|188.买卖股票的最佳时机IV_第1张图片

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

class Solution {
    public int maxProfit(int[] prices) {
        int[][] dp=new int[prices.length][5];
        dp[0][0]=0;
        dp[0][1]=-prices[0];
        dp[0][2]=0;
        dp[0][3]=-prices[0];
        dp[0][4]=0;
        for(int i=1;i<prices.length;i++){
            dp[i][1]=Math.max(dp[i-1][1],dp[i-1][0]-prices[i]);
            dp[i][3]=Math.max(dp[i-1][3],dp[i-1][2]-prices[i]);
            dp[i][2]=Math.max(dp[i-1][2],dp[i-1][1]+prices[i]);
            dp[i][4]=Math.max(dp[i-1][4],dp[i-1][3]+prices[i]);
        }
        return dp[prices.length-1][4];
    }
}

188.买卖股票的最佳时机IV

力扣题目链接

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:
  • 输入:k = 2, prices = [2,4,1]
  • 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。
  • 示例 2:
  • 输入:k = 2, prices = [3,2,6,5,0,3]
  • 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 100

  • 0 <= prices.length <= 1000

  • 0 <= prices[i] <= 1000

  • 动态规划

1.确定dp数组(dp table)以及下标的含义

1——第一次持有股票

2——第一次不持有股票

3——第二次持有股票

4——第二次不持有股票

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

dp[i][j]中 i表示第i天,j为 [0 - 2K+1] 个状态,dp[i][j]表示第i天状态j所剩最大现金。

int[][] dp=new int[][]

2.确定递推公式

还要强调一下:dp[i][1]表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

这里要类比j为奇数是买,偶数是卖的状态

3.初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出,当天买入,当天卖出,所以dp[0][2] = 0;

第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

4.遍历顺序

前向后

5.打印dp数组

class Solution {
    public int maxProfit(int k, int[] prices) {
        int[][] dp=new int[prices.length+1][2*k+1];
        for(int j=1;j<2*k;j+=2){
            dp[0][j]=-prices[0];
        }
        for(int i=1;i<prices.length;i++){
            for(int j=0;j<2*k-1;j+=2){
                dp[i][j+1]=Math.max(dp[i-1][j+1],dp[i-1][j]-prices[i]);
                dp[i][j+2]=Math.max(dp[i-1][j+2],dp[i-1][j+1]+prices[i]);
            }
        }
        return dp[prices.length-1][2*k];

    }
}

你可能感兴趣的:(算法,动态规划,java,leetcode)