相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期
在动态规划:122.买卖股票的最佳时机II (opens new window)中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。
动规五部曲,分析如下:
dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。
其实本题很多人搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。
具体可以区分出如下四个状态:
j的状态为:
很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。
从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。
如果大家按照代码随想录顺序来刷的话,会发现 买卖股票最佳时机 1,2,3,4 的题目讲解中
「今天卖出股票」是没有单独列出一个状态的归类为「不持有股票的状态」,而本题为什么要单独列出「今天卖出股票」 一个状态呢?
因为本题有冷冻期,而冷冻期的前一天,只能是 「今天卖出股票」状态,如果是 「不持有股票状态」那么就很模糊,因为不一定是 卖出股票的操作。
注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。
达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:
那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);
达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:
昨天一定是持有股票状态(状态一),今天卖出
即:dp[i][2] = dp[i - 1][0] + prices[i];
达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:
昨天卖出了股票(状态三)
dp[i][3] = dp[i - 1][2];
综上分析,递推代码如下:
dp[i][0] = Math.max(dp[i-1][0],Math.max(dp[i-1][1] - prices[i],dp[i-1][3]-prices[i]));
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][3]);
dp[i][2] = dp[i-1][0]+prices[i];
dp[i][3] = dp[i-1][2];
这里主要讨论一下第0天如何初始化。
如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。
保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。
如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。
今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。
从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。
以 [1,2,3,0,2] 为例,dp数组如下:
最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。
代码如下:
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][4];
/*
0:持股
1:保持卖出股票
2:卖出股票
3:冷冻期
*/
dp[0][0] = -prices[0];
for (int i = 1; i < prices.length; i++) {
dp[i][0] = Math.max(dp[i-1][0],Math.max(dp[i-1][1] - prices[i],dp[i-1][3]-prices[i]));
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][3]);
dp[i][2] = dp[i-1][0]+prices[i];
dp[i][3] = dp[i-1][2];
}
return Math.max(dp[prices.length-1][1],Math.max(dp[prices.length-1][2],dp[prices.length-1][3]));
}
}
这次把冷冻期这道题目,讲的很透彻了,细分为四个状态,其状态转移也十分清晰,建议大家都按照四个状态来分析,如果只划分三个状态确实很容易给自己绕进去。
本题贪心解法:贪心算法:买卖股票的最佳时机含手续费(opens new window)
性能是:
本题使用贪心算法并不好理解,也很容易出错,那么我们再来看看是使用动规的方法如何解题。
相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。
唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。
这里重申一下dp数组的含义:
dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
本题和动态规划:122.买卖股票的最佳时机II (opens new window)的区别就是这里需要多一个减去手续费的操作。
以上分析完毕,代码如下:
class Solution {
public int maxProfit(int[] prices, int fee) {
int[][] dp = new int[prices.length][2];
/*
dp[i][0]:持有股票
dp[i][1]:不持有股票
*/
dp[0][0] = -prices[0];
int num = 0;
for (int i = 1; i < prices.length; i++) {
dp[i][0]= Math.max(dp[i-1][0],dp[i-1][1]-prices[i]);
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]+prices[i] - fee);
}
return Math.max(dp[prices.length-1][0],dp[prices.length-1][1]);
}
}