- Xinference如何注册自定义模型
玩人工智能的辣条哥
人工智能AI大模型Xinference
环境:Xinference问题描述:Xinference如何注册自定义模型解决方案:1.写个model_config.json,内容如下{"version":1,"context_length":2048,"model_name":"custom-llama-3","model_lang":["en","ch"],"model_ability":["generate","chat"],"model
- [AI资讯·0605] GLM-4系列开源模型,OpenAI安全疑云,ARM推出终端计算子系统,猿辅导大模型备案……
老牛同学
AI人工智能ai大模型AI资讯
AI资讯1毛钱1百万token,写2遍红楼梦!国产大模型下一步还想卷什么?AI「末日」突然来临,公司同事集体变蠢!只因四大聊天机器人同时宕机OpenAI员工们开始反抗了!AI手机PC大爆发,Arm从软硬件到生态发力,打造行业AI百宝箱GLM-4开源版本:超越Llama3,多模态比肩GPT4V,MaaS平台也大升级猿辅导竟然是一家AI公司?大模型全家桶曝光|甲子光年FineChatBI,帆软在AI方
- 新款 GPT-4o mini、Llama 3.1、Mistral NeMo 12B 和其他 GenAI 趋势指南
数云界
llama
作者使用GPT-4o创建的图像,用于表示不同的模型欢迎来到雲闪世界。自2022年11月推出ChatGPT以来,几乎每周都会出现新的模型、新颖的提示方法、创新的代理框架或其他令人兴奋的GenAI突破。2024年7月也不例外:仅在本月,我们就看到了MistralCodestralMamba、MistralNeMo12B、GPT-4omini和Llama3.1等的发布。这些模型在推理速度、推理能力、编码
- 大模型实战—Ollama 本地部署大模型
猫猫姐
大模型大模型
Ollama本地部署大模型在当今的科技时代,AI已经成为许多领域的关键技术。AI的应用范围广泛,从自动驾驶汽车到语音助手,再到智能家居系统,都有着AI的身影,而随着Facebook开源LLama2更让越来越多的人接触到了开源大模型。今天我们推荐的是一条命令快速在本地运行大模型,在GitHub超过22KStar的开源项目:ollama随着围绕着Ollama的生态走向前台,更多用户也可以方便地在自己电
- 【Qwen2部署实战】Qwen2初体验:用Transformers打造智能聊天机器人
寻道AI小兵
AI大模型Qwen系列探索实践人工智能AIGC语言模型AI编程Qwen
系列篇章No.文章1【Qwen部署实战】探索Qwen-7B-Chat:阿里云大型语言模型的对话实践2【Qwen2部署实战】Qwen2初体验:用Transformers打造智能聊天机器人3【Qwen2部署实战】探索Qwen2-7B:通过FastApi框架实现API的部署与调用4【Qwen2部署实战】Ollama上的Qwen2-7B:一键部署大型语言模型指南5【Qwen2部署实战】llama.cpp:
- 快速上手指南:在Windows系统中下载Ollama,一键启动大模型体验!
再不会AI就不礼貌了
人工智能学习方法大数据llama语言模型
1.下载ollama官网下载安装:ollama.com2.拉取大模型llama3.1终端中输入ollamapullllama3.1,等待安装3.运行llama3.1ollamarunllama3.1接下来就可以和模型对话了退出/bye运行/?查看更多聊天中命令其他ollamagithub:github.com/ollama/olla…常用命令删除模型:ollamarmollamarmllama3.
- 反射是一个新的AI模型,可以在一台性能良好的笔记本上运行并在测试中击败GPT-4o
AI甲子光年
人工智能
开源AI模型领域又迎来一位新的重量级选手。由初创公司HyperWrite开发的Reflection70B,凭借其创新的“反思”机制,正引发广泛关注,这一机制旨在解决大型语言模型的核心问题——幻觉。在早期的基准测试中,这个升级版的Meta的Llama3.1-70BInstruct架构已经超越了OpenAI的GPT-4o。Reflection70B引入了一种创新方法来增强语言模型的推理能力和准确性。通
- LLAMA Factory: 简洁高效的大语言模型训练平台
俞纬鉴Joshua
LLAMAFactory:简洁高效的大语言模型训练平台LLaMA-Factory易于使用的LLM微调框架(LLaMA,BLOOM,Mistral,百川,Qwen,ChatGLM)。项目地址:https://gitcode.com/gh_mirrors/ll/LLaMA-Factory项目介绍LLaMAFactory定位为一款简洁、高效的大规模语言模型训练和微调平台。其设计初衷在于让用户无需编码即可
- llama.cpp本地部署大模型
张兆坤的那些事
大模型llama.cpp
llama.cpp是一个C++库,用于简化LLM推理的设置,它使得在本地机器上运行大模型(GGUF格式)成为可能。官网:https://github.com/ggerganov/llama.cpp模型库:https://huggingface.co/HF-Mirror魔搭社区安装并且使用llama.cpp0.安装llama.cpp官方文档:https://github.com/ggerganov/
- 大模型多机多卡脚本实例 - 增量预训练 -accelerate和deepspeed命令多机多卡训练有什么不同
AI生成曾小健
大模型/增量预训练CPT深度学习python机器学习
第一步,同步权重ls-l/data/xxx/gpu008/MoeRemake/train/etuning/LLaMA-Factory2/models/xxx-Base-10B-200k-Llama第二步,同步环境:./scp_batch.sh"/data/xxx/miniconda3/envs/etuning4/""/data/vayu/miniconda3/envs/etuning4/"gpu0
- Langchain + Ollama
AI工程仔
LLM&AIGClangchainollamarag
文章目录方式一:Ollama运行起来后,使用langchain加载fromlangchain.llmsimportOllamaollama=Ollama(base_url='http://localhost:11434',model="llama2")print(ollama("whyistheskyblue"))方式二:使用langchain_community1、下载Ollama:https:
- 超越传统:Reflection 70B如何革新AI语言处理
黑金IT
人工智能AI编程
Reflection70B:AI语言模型的新里程碑AI领域迎来了革命性的变革,HyperWrite公司推出的开源AI大模型Reflection70B,以其卓越的性能在多个基准测试中超越了GPT-4o和Llama3.1。这款基于Meta的Llama3.170BInstruct构建的模型,采用了先进的“Reflection-Tuning”技术,能够在最终确定回答前检测并纠正自身的错误,显著提高了输出的
- llama_index 官方文档阅读笔记 (持续更新版)
皮卡丘ZPC
AIGCforGPT评分体系构架笔记llama人工智能语言模型
llama0.10.17版本阅读链接:LlamaIndexv0.10.17LlamaIndex是一个基于LLM的应用程序的数据框架,它受益于上下文增强。这种LLM系统被称为RAG系统,代表“检索-增强生成”。LlamaIndex提供了必要的抽象,以便更轻松地摄取、构建和访问私有或特定于域的数据,以便将这些数据安全可靠地注入LLM,以实现更准确的文本生成。为什么选择上下文增强?LLM的局限LLM在人
- 利用 Llama-Index为你的应用程序注入智能搜索
黑金IT
llamapython向量数据
Llama-Index是一个基于大型语言模型的索引和检索工具,它允许用户快速检索和使用大量文本数据。要安装Llama-Index,你需要确保你的Python环境已经设置好,并且你有足够的系统资源来运行它,因为它可能需要较大的内存和计算能力。安装Llama-Index的一般步骤:确保你已经安装了Python和pip。你可以通过运行以下命令来检查Python版本:pipinstallllama-ind
- 从零搭建一个可离线使用的可实时更新扩展信息的智能问答系统 llamaindex&LLama3大模型&RAG
千年奇葩
AI人工智能aillama人工智能llamafactory大模型
之前对一件事很好奇,为什么去年训练的大模型可以回答今天的新闻内容。答案是使用了知识扩展系统。基本原理是把参考答案和问题一同提给大模型,给他充分的参考信息做回复编辑。本文教你完成离线版本的智能问答系统搭建。有问题请直接留言最近在疯狂找下家,本人精通图形渲染和ai,求捞啊!基本架构图讲一下基本运行流程:人工准备数据转为嵌入向量存入数据库并生成索引用户提问流程:用户输入问题在索引数据库中查询匹配度较高的
- 大模型入门(一)
pit_man
人工智能大模型
大模型入门(一)一、LLaMa模型介绍1)Pre-normalization2)SwiGLU激活函数3)RoPE旋转位置编码二、Alpaca模型介绍三、Vicuna模型介绍大模型入门(一)——LLaMa/Alpaca/VicunaLLaMa模型是Meta开源的大模型,模型参数从7B到65B不等,LLaMa-7B在大多数基准测试上超过了GPT3-173B,而LLaMa-65B和Chinchilla-
- 微软开源 Phi-3.5 视觉模型
三花AI
三花AImicrosoft人工智能深度学习
微软刚刚发布了Phi3.5系列模型,一个小型模型("Mini")、一个混合模型("MoE")和一个视觉模型。下面是关键总结:Phi3.5Mini:3.8B参数,性能超过Llama3.1(8B)和Mistral7B,接近MistralNeMo12B。支持多种语言,使用了包含32,000个词汇的分词器。512个H100GPU,3.4万亿个tokens训练了10天。Phi3.5MoE:16x3.8B参数
- 基于Llama 3搭建中文版(Llama3-Chinese-Chat)大模型对话聊天机器人
老牛同学
AI专业技术llama机器人人工智能aiOllama
前面两篇博文,我们分别在个人笔记本电脑部署了Llama38B参数大模型,并使用Ollama搭建了基于Web可视化对话聊天机器人,可以在自己电脑上愉快的与Llama大模型Web机器人对话聊天了。但在使用过程中,笔者发现Llama大模型经常出现中文问题英文回答的问题,需要使用中文回答等提示词告诉大模型用中文回答,体验还不是最好的。今天,本博文就来解决这个问题,让我们有个中文版的Llama3Web对话机
- LLM资料大全:文本多模态大模型、垂直领域微调模型、STF数据集、训练微调部署框架、提示词工程等
汀、人工智能
LLM工业级落地实践LLM技术汇总人工智能自然语言处理Prompt工程AI大模型SFTvLLMLLM
LLM资料大全:文本多模态大模型、垂直领域微调模型、STF数据集、训练微调部署框架、提示词工程等自ChatGPT为代表的大语言模型(LargeLanguageModel,LLM)出现以后,由于其惊人的类通用人工智能(AGI)的能力,掀起了新一轮自然语言处理领域的研究和应用的浪潮。尤其是以ChatGLM、LLaMA等平民玩家都能跑起来的较小规模的LLM开源之后,业界涌现了非常多基于LLM的二次微调或
- AI多模态实战教程:面壁智能MiniCPM-V多模态大模型问答交互、llama.cpp模型量化和推理
AIGCmagic社区
AI多模态人工智能交互llama
一、项目简介MiniCPM-V系列是专为视觉-语⾔理解设计的多模态⼤型语⾔模型(MLLMs),提供⾼质量的⽂本输出,已发布4个版本。1.1主要模型及特性(1)MiniCPM-Llama3-V2.5:参数规模:8B性能:超越GPT-4V-1106、GeminiPro、Qwen-VL-Max和Claude3,⽀持30+种语⾔,多模态对话,增强OCR和指令跟随能⼒。部署:量化、编译优化,可⾼效部署于端侧
- 大模型--个人学习心得
挚爱清&虚
人工智能
大模型LLM定义大模型LLM,全称LargeLanguageModel,即大型语言模型LLM是一种基于Transformer架构模型,它通过驯良大量文本数据,学习语言的语法、语义和上下文信息,从而能够对自然语言文本进行建模这种模型在自然语言处理(NLP)领域具有广泛应用常见的13个大模型BERT、GPT系列、T5、Meta的Llama系列、华为盘古模型、阿里巴巴通义大模型、科大讯飞星火大模型、百度
- LLM大模型落地-从理论到实践
hhaiming_
语言模型人工智能ai深度学习
简述按个人偏好和目标总结了学习目标和路径(可按需学习),后续将陆续整理出相应学习资料和资源。学习目标熟悉主流LLM(Llama,ChatGLM,Qwen)的技术架构和技术细节;有实际应用RAG、PEFT和SFT的项目经验较强的NLP基础,熟悉BERT、T5、Transformer和GPT的实现和差异,能快速掌握业界进展,有对话系统相关研发经验掌握TensorRT-LLM、vLLM等主流推理加速框架
- 整理了上百个开源中文大语言模型,涵盖模型、应用、数据集、微调、部署、评测_基于大语言模型的网络自动配置平台的设计与开发
AI大模型-搬运工
开源语言模型网络AI大模型自然语言处理LLM人工智能
自ChatGPT为代表的大语言模型(LargeLanguageModel,LLM)出现以后,由于其惊人的类通用人工智能(AGI)的能力,掀起了新一轮自然语言处理领域的研究和应用的浪潮。尤其是以ChatGLM、LLaMA等平民玩家都能跑起来的较小规模的LLM开源之后,业界涌现了非常多基于LLM的二次微调或应用的案例。本项目旨在收集和梳理中文LLM相关的开源模型、应用、数据集及教程等资料,目前收录的资
- llama factory微调时出现x86_64-conda-linux-gnu/bin/ld: cannot find -lcurand: No such file or directory解决方案
爱编程的喵喵
Python基础课程pythonllamafactorycurand解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了llamafactory微调时出现x
- 本地电脑大模型系列之 20 离线 AI:使用 Ollama+llama3+privateGPT+Langchain+GPT4ALL+ChromaDB 与 Pdf、Excel、CSV、PPTX、PPT、
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能langchainpdf
简介Ollama在Mac/Windows/Ubuntu上与llama3一起运行MAC至少需要8GBRAM,Ubuntu和Windows至少需要16GBRAMpython3.10和git系列文章《本地电脑搭建StreamDiffusion:用眼睛见证实时人工智能创意利用交互式高速扩散技术彻底改变图像生成》权重1,本地类《使用本地Llama2模型和向量数据库建立私有检索增强生成(RAG)系统LangC
- LLM-项目详解(一):Chinese-LLaMA-Alpaca【transformers/models/llama/modeling_llama.py文件】
u013250861
#LLM/经典模型llama
site-packages/transformers/models/llama/modeling_llama.py#coding=utf-8#Copyright2022EleutherAIandtheHuggingFaceInc.team.Allrightsreserved.##ThiscodeisbasedonEleutherAI'sGPT-NeoXlibraryandtheGPT-NeoX#a
- LLM - 从头实现 LLaMA3 网络与推理流程 (RMS | RoPE | GQA | SwiGLU)
CarolineSpike
大模型(LLM)Llama3RoPEBPERMS正则化分组查询注意力SwiGLU从头实现
欢迎关注我的CSDN:https://spike.blog.csdn.net/本文地址:https://spike.blog.csdn.net/article/details/141462669免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。LLaMA3是Meta的最新大语言模型,在整体网络设计进行多项升级,显著提升了模型的性能和效率,重要的改进,如下:词汇量增加至1
- “全面解析!大模型面试宝典(含精选答案与策略)“
AGI-老冉
人工智能chatgptagi学习知识图谱ai程序员
大模型(LLMs)基础面1.目前主流的开源模型体系有哪些?2.prefixLM和causalLM区别是什么?3.涌现能力是啥原因?4.大模型LLM的架构介绍?大模型(LLMs)进阶面1.llama输入句子长度理论上可以无限长吗?1.什么是LLMs复读机问题?2.为什么会出现LLMs复读机问题?3.如何缓解LLMs复读机问题?1.LLMs复读机问题2.llama系列问题3.什么情况用Bert模型,什
- 英伟达如何通过剪枝和蒸馏技术让Llama 3.1模型“瘦身“?
蒜鸭
人工智能算法机器学习
英伟达如何通过剪枝和蒸馏技术让Llama3.1模型"瘦身"?大家好,我是蒜鸭。今天我们来聊聊英伟达最近在大语言模型优化方面的一项有趣研究。随着Meta发布Llama3.1系列模型,如何在保持模型性能的同时缩小其体积成为了业界关注的焦点。英伟达研究团队通过结构化权重剪枝和知识蒸馏技术,成功将Llama3.18B模型压缩为4B参数的小型语言模型,并取得了不俗的效果。让我们一起来深入探讨这项技术的原理和
- 【大模型】大模型 CPU 推理之 llama.cpp
szZack
大语言模型人工智能大模型人工智能llama.cpp
【大模型】大模型CPU推理之llama.cppllama.cpp安装llama.cppMemory/DiskRequirementsQuantization测试推理下载模型测试参考llama.cpp描述Themaingoalofllama.cppistoenableLLMinferencewithminimalsetupandstate-of-the-artperformanceonawideva
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p