- 结构化提示词实践:提升大模型意图识别的精准度
有才不一定有德
chatgptAIGC
大家好!我是第一次写博客,可能会有一些不够专业或者细节上的错误,请大家多多指正!今天的主题是“结构化提示词”,我将结合我在学习LangGPT结构化提示词时的心得,分享一些如何编写清晰、准确的提示词的小技巧。这些技巧不仅帮助我提高了与大模型的互动效率,也使得任务的执行更加精准。希望这篇文章对大家有所帮助。为什么要使用结构化提示词?在与大模型的交互中,我们往往希望能够快速得到准确的回答。如果提示词不清
- 一文读懂自动编码器:类型、原理与应用
人工智能
一文读懂自动编码器:类型、原理与应用近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】目录自动编码器稀疏自动编码器K稀疏自动编码器收缩式自动编码器卷积自动编码器SequencetoSequence自动编码器降噪自动编码器变分自动编码器遮罩自动编码器自动编码器自动编码器是一种用于无监督学习和
- SQL调优 - 优化 MySQL 中的 IN 语句查询效率
逍遥Sean
SQL设计与调优实战sqlmysql数据库
作者:逍遥Sean简介:一个主修Java的Web网站\游戏服务器后端开发者主页:https://blog.csdn.net/Ureliable觉得博主文章不错的话,可以三连支持一下~如有疑问和建议,请私信或评论留言!前言在使用MySQL进行开发时,我们经常会使用到IN语句来查询某个字段是否包含在一个给定的值集合中。然而,当这个值集合的数量超过一定的限制时,IN语句可能会导致查询效率显著下降,甚至引
- Vue:前端体系、前后端分离
天宇阿
Vue前端vue.js
文章目录一、前端核心分析1、概述2、前端知识体系2.1、前端三要素2.2、结构层(HTML)2.3、表现层(CSS)2.4、行为层(JavaScript)2.5、三端统一2.6、后端技术2.7、主流前端框架3、了解前后分离的演变史3.1、后端为主的MVC时代3.2、基于AJAX带来的SPA时代3.3、前端为主的MV*时代3.4、NodeJS带来的全栈时代3.5、总结学习视频来自于:秦疆(遇见狂神说
- 1 项目概述
40岁的系统架构师
微信小程序
项目篇带着大家一起做项目,其中涉及到产品设计,架构设计和前段后端的开发工作。带着大家一起把项目做起来。开始我们做几个小项目,基本涉及不到架构设计。后面再做涉及到我们前面讲到的架构设计的相关知识,把能用到的技术大体上用一遍。先带着大家做一个无限极返佣的系统和一些赚外快的小项目和一些游戏脚本(主要是按键精灵和C++开发)还有一些爬虫项目,这些项目都是能够给大家带来收益的,创作不易,这些项目可能都要收费
- 无需标定板!Galibr:无需目标的LiDAR相机外参标定新方法
计算机视觉工坊
3D视觉从入门到精通数码相机自动驾驶
编辑:3DCV添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、3D视觉最新模组、3DGS系列(视频+文档)、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!写在前面这篇文章
- Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码
weixin_30777913
音视频语言模型大数据人工智能
ApacheIceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照机制、并发读写能力以及模式演进等特性,使得它能够高效地处理海量数据,并且保证数据的一致性和可用性。特别是在特征工程和模型训练方面,I
- springboot/ssm教学资源管理系统web在线课程教学视频Java代码编写
Java学长-kirito
javaspringbootspring
springboot/ssm教学资源管理系统web在线课程教学视频Java代码编写基于springboot(可改ssm)+vue项目开发语言:Java框架:springboot/可改ssm+vueJDK版本:JDK1.8(或11)服务器:tomcat数据库:mysql5.7(或8.0)数据库工具:Navicat/sqlyog开发软件:eclipse/idea依赖管理包:Maven代码+数据库保证完
- 导入功能相关-下载模板
chengchong_cc
windows
后端/***导出模板*@paramresponse*/@GetMapping("export-template")@ApiOperationSupport(order=14)@ApiOperation(value="导出模板")publicvoidexportUser(HttpServletResponseresponse){Listlist=newArrayList{downloadXls(re
- Python 入门指南:如何在 MacOS 上轻松安装 Python
NicoleGus
pythonmacos开发语言
Python作为一门功能强大且易于学习的编程语言,已经成为许多开发者和数据科学家的首选工具。无论是初学者还是经验丰富的程序员,Python都能为他们提供强大的支持。如果你是一名MacOS用户,想要开始学习Python或者在Mac上进行开发,首先需要正确安装Python环境。本文将详细介绍如何在MacOS上安装Python,帮助你快速开始Python编程之旅。1.检查MacOS是否已预装Python
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- 投票法:简单而强大的分类利器
ningaiiii
机器学习与深度学习分类机器学习人工智能
投票法:简单而强大的分类利器在机器学习的分类任务中,我们常常需要寻找高效且准确的方法来对数据进行分类。今天,让我们一起来探讨一种简单却极为强大的分类方法——投票法。一、投票法原理(一)通俗易懂的理解投票法就像一场班级选举。假设有一个班级要选出最受欢迎的水果,每个同学心中都有自己的选择(这就好比一个个分类器给出的分类结果)。最后统计每个水果获得的票数,得票最多的水果就当选(对应分类任务中,票数最多的
- 【单层神经网络】基于MXNet库简化实现线性回归
辰尘_星启
神经网络mxnet线性回归
写在前面同最开始的两篇文章完整程序及注释'''导入使用的库'''#基本frommxnetimportautograd,nd,gluon#模型、网络frommxnet.gluonimportnnfrommxnetimportinit#学习frommxnet.gluonimportlossasgloss#数据集frommxnet.gluonimportdataasgdata'''生成测试数据集'''#
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- AtCoder备赛刷题 ABC 383 | 9 Divisors
热爱编程的通信人
算法
学习C++从娃娃抓起!记录下AtCoder(日本算法竞技网站)备赛学习过程中的题目,记录每一个瞬间。附上汇总贴:AtCoder备赛刷题|汇总【题目描述】FindthenumberofpositiveintegersnotgreaterthanNNNthathaveexactly999positivedivisors.找到不大于NNN且恰好有999个因数的正整数的数量。【输入】Theinputisg
- 线性回归基础学习
Remoa
人工智能线性回归优化gluonmxnetloss
线性回归基础学习目录:理论知识样例代码测试参考文献一、理论知识线性回归思维导图NDArray:MXNet中存储和变换数据的主要工具,提供GPU计算和自动求梯度等功能线性回归可以用神经网络图表示,也可以用矢量计算表示在Gluon中,data模块提供了有关数据处理的工具,nn模块定义了大量神经网络的层,loss模块定义了各种损失函数在MXNet的init模块(initializer)提供了模型参数化的
- 【博学谷学习记录】超强总结,用心分享 | Hive分区表和分桶表
Onzswhite
hive大数据hadoop
#博学谷IT技术支持#一、分区表分区表就是对一个表的文件数据进行分类管理,表现形式就是有很多的文件夹(dt=2019-02-27)。分区表的作用是以后查询时,我们可以手动指定对应分区的数据,避免全表扫描,提高查询效率。所谓的分区表,指的就是将数据按照表中的某一个字段进行统一归类,并存储在表中的不同的位置,也就是说,一个分区就是一类,这一类的数据对应到hdfs存储上就是对应一个目录。当我们需要进行处
- 深度学习:基于MindNLP的RAG应用开发
Landy_Jay
深度学习人工智能
什么是RAG?RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生成内容的准确性、相关性和时效性。基本思想:通过外部知识库动态检索与用户查询相关的信息,并将检索结果作为上下文输入生成模型,辅助生成更可靠的回答。与传统LLM的区别:传统LLM仅依赖预训练参数中的静态知
- MyBatis学习:多表映射
Landy_Jay
mybatis学习数据库
目录一、多表映射概念1.1多表查询结果映射思路1.2实体类设计方案1.2.1对一关系设计1.2.2对多关系设计多表映射案例准备二、对一映射三、对多映射四、多表映射总结4.1多表映射优化4.2总结:一、多表映射概念1.1多表查询结果映射思路数据库的表结构具有复杂性,不是所有数据库都达到第三范式或BCNF范式,故数据库查询结果与java对象的属性映射也变得复杂。MyBatis使用ResultMap实现
- 可能是最深入全面的图解 Java Virtual Threads
jvmjvm虚拟机
本文尽我所能,用了数月时间,在学习了JavaVirtualTheads的一些设计和实现理念后,用我所能的精炼文字和画图,去记录我的所学。是我现在能找到的最深入全面的图解JavaVirtualThreads文章。本文摘自我在编写的开源互动图书《面向技术宅的JVM内幕》中的VirtualThreads一节。如图片不清,请转回原文。VirtualThreads按这本书作者的德性,和这本书的定位,这里不会
- 深度学习篇---张量&数据流动处理
Ronin-Lotus
深度学习篇深度学习人工智能pythonTensorFlowPytorch张量数据流动处理
文章目录前言第一部分:张量张量的基本概念1.维度标量(0维)向量(1维)矩阵(2维)三维张量2.形状张量运算1.基本运算加法减法乘法除法2.广播3.变形4.转置5.切片6.拼接7.矩阵分解8.梯度运算:深度学习框架中的张量运算1.自动求导2.硬件加速3.高度优化第二部分:数据流动与处理1.磁盘(硬盘或固态硬盘)读取数据写入数据2.内存(RAM)加载程序和数据数据交换3.缓存CPU缓存磁盘缓存4.数
- threejs起步学习之创建旋转立方体并随时停止和控制旋转
three.js
直接看成品可以看到点击开始旋转的时候立方体开始旋转,点击停止旋转的时候立方体停止旋转。先放官网文档threejs官网点击en切换为中文,然后点击创建第一个场景,页面就全部变成中文啦。先使用原生js编写代码,首先就是下载threejs然后引入然后就可以使用THREE这个对象了要创建一个立方体,首先我们需要创建一个场景,一个摄像机,一个渲染器,这样我们才能透过摄像机看到渲染出的场景varwidth=5
- 【爬虫】JS逆向解决蝉妈妈加密参数data
秋无之地
爬虫JS逆向python爬虫js逆向
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关目录一、先打开目标网站,打开F12调试模式二、通过刷新页面定位接口,并找到接口上的加密参数data三、打开启动器(Initiator)
- PyQt和QML 混合编程下出现 unable to convert a Python 'int' to C++ ‘int’ 错误
乱乱乱乱步
第一篇博客写在出差路上。最近在调试一套PyQt与QML混合编程的程序,程序出现这个错误unabletoconvertaPython'int'toC++'int',并没有定位到具体哪行代码出错,经过排查,我发现原因如下self.distanceStatus=distanceStatus赋值给self.distanceStatus的数值过大,超出QML里面int类型的取值范围,也就是溢出了。Text{
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- 拼多多2025届校招开起,无拼不青春,欢迎加入!!!
愤怒的小青春
java
上海微电子装备SMEE社招C++面经流程:总共三面,一面是项目经理,二面是部门经理,三面是人力资源。公司是做光刻机整机的。部门是做硅片对专项练习训练营打卡第一天专项练习训练营打卡第一天实习大家好,我现在是大三暑假,刚刚找到一个实习Linux开发工程师,是第一份实习,现在有必要去吗?我在笔试专项训练营打卡第一天#牛客社群专项练习训练营#那是废物,宝宝~格力一面结构设计记录一下我紧张的人生第一面,面试
- Mixture of Experts(MoE)学习笔记
南七小僧
人工智能网站开发医疗器械研发学习笔记人工智能MoE大模型
1学习动机第一次了解到MoE(Mixtureofexperts),是在GPT-4模型架构泄漏事件,听说GPT-4的架构是8个GPT-3级别大小的模型以MoE架构(8*220B)组合成一个万亿参数级别的模型。不过在这之后开源社区并没有对MoE架构进行很多的探索,更多的工作还是聚焦在预训练新的大模型,在Llama2或其他模型上做Fine-tune,以及扩展大模型的ContextLength。12月8号
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- 周报 | 25.1.27-25.2.2文章汇总
双木的木
深度学习拓展阅读python拓展学习人工智能transformer算法深度学习YOLOchatgptllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|25.1.20-25.1.26文章汇总-CSDN博客机器学习AI算法工程|DeepSeekV3两周使用总结-CSDN博客Datawhale|一文详尽之SFT(监督微调,建议收藏)!-CSDN博客arXiv每日学术速递|强强联合:CNN与Transformer融合创新提升模型性能!!-CSDN博客AI生成未来|字节提出VideoWo
- 学习第七十七行
不是只有你能在乱世中成为大家的救世主
学习运维html经验分享
对于html,用vscode编程,可以用AI,同时输入!+TAB自动生成骨架,有src路径,titie提示文本,alt替换文本(图片不显示,显示的文字),width宽设置一个即可,(height),border边框,同时div和span是个块,前者大后者小,前者独一行,撒旦,em斜体,strong粗体,del删除线,ins下划线。
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s