# -*- coding: utf-8 -*-
import math, random, time
import threading
import tkinter as tk
import re
# import uuid
Fireworks = []
maxFireworks = 8
height, width = 600, 600
class firework(object):
def __init__(self, color, speed, width, height):
# uid=uuid.uuid1()
self.radius = random.randint(2, 4) # 粒子半径为2~4像素
self.color = color # 粒子颜色
self.speed = speed # speed是1.5-3.5秒
self.status = 0 # 在烟花未爆炸的情况下,status=0;爆炸后,status>=1;当status>100时,烟花的生命期终止
self.nParticle = random.randint(20, 30) # 粒子数量
self.center = [random.randint(0, width - 1), random.randint(0, height - 1)] # 烟花随机中心坐标
self.oneParticle = [] # 原始粒子坐标(100%状态时)
self.rotTheta = random.uniform(0, 2 * math.pi) # 椭圆平面旋转角
# 椭圆参数方程:x=a*cos(theta),y=b*sin(theta)
# ellipsePara=[a,b]
self.ellipsePara = [random.randint(30, 40), random.randint(20, 30)]
theta = 2 * math.pi / self.nParticle
for i in range(self.nParticle):
t = random.uniform(-1.0 / 16, 1.0 / 16) # 产生一个 [-1/16,1/16) 的随机数
x, y = self.ellipsePara[0] * math.cos(theta * i + t), self.ellipsePara[1] * math.sin(
theta * i + t) # 椭圆参数方程
xx, yy = x * math.cos(self.rotTheta) - y * math.sin(self.rotTheta), y * math.cos(
self.rotTheta) + x * math.sin(self.rotTheta) # 平面旋转方程
self.oneParticle.append([xx, yy])
self.curParticle = self.oneParticle[0:] # 当前粒子坐标
self.thread = threading.Thread(target=self.extend) # 建立线程对象
def extend(self): # 粒子群状态变化函数线程
for i in range(100):
self.status += 1 # 更新状态标识
self.curParticle = [[one[0] * self.status / 100, one[1] * self.status / 100] for one in
self.oneParticle] # 更新粒子群坐标
time.sleep(self.speed / 50)
def explode(self):
self.thread.setDaemon(True) # 把现程设为守护线程
self.thread.start() # 启动线程
def __repr__(self):
return ('color:{color}\n'
'speed:{speed}\n'
'number of particle: {np}\n'
'center:[{cx} , {cy}]\n'
'ellipse:a={ea} , b={eb}\n'
'particle:\n{p}\n'
).format(color=self.color, speed=self.speed, np=self.nParticle, cx=self.center[0], cy=self.center[1],
p=str(self.oneParticle), ea=self.ellipsePara[0], eb=self.ellipsePara[1])
def colorChange(fire):
rgb = re.findall(r'(.{2})', fire.color[1:])
cs = fire.status
f = lambda x, c: hex(int(int(x, 16) * (100 - c) / 30))[2:] # 当粒子寿命到70%时,颜色开始线性衰减
if cs > 70:
ccr, ccg, ccb = f(rgb[0], cs), f(rgb[1], cs), f(rgb[2], cs)
else:
ccr, ccg, ccb = rgb[0], rgb[1], rgb[2]
return '#{0:0>2}{1:0>2}{2:0>2}'.format(ccr, ccg, ccb)
def appendFirework(n=1): # 递归生成烟花对象
if n > maxFireworks or len(Fireworks) > maxFireworks:
pass
elif n == 1:
cl = '#{0:0>6}'.format(hex(int(random.randint(0, 16777215)))[2:]) # 产生一个0~16777215(0xFFFFFF)的随机数,作为随机颜色
a = firework(cl, random.uniform(1.5, 3.5), width, height)
Fireworks.append({'particle': a, 'points': []}) # 建立粒子显示列表,‘particle’为一个烟花对象,‘points’为每一个粒子显示时的对象变量集
a.explode()
else:
appendFirework()
appendFirework(n - 1)
def show(c):
for p in Fireworks: # 每次刷新显示,先把已有的所以粒子全部删除
for pp in p['points']:
c.delete(pp)
for p in Fireworks: # 根据每个烟花对象,计算其中每个粒子的显示对象
oneP = p['particle']
if oneP.status == 100: # 状态标识为100,说明烟花寿命结束
Fireworks.remove(p) # 移出当前烟花
appendFirework() # 新增一个烟花
continue
else:
li = [[int(cp[0] * 2) + oneP.center[0], int(cp[1] * 2) + oneP.center[1]] for cp in
oneP.curParticle] # 把中心为原点的椭圆平移到随机圆心坐标上
color = colorChange(oneP) # 根据烟花当前状态计算当前颜色
for pp in li:
p['points'].append(
c.create_oval(pp[0] - oneP.radius, pp[1] - oneP.radius, pp[0] + oneP.radius, pp[1] + oneP.radius,
fill=color)) # 绘制烟花每个粒子
root.after(50, show, c) # 回调,每50ms刷新一次
if __name__ == '__main__':
appendFirework(maxFireworks)
root = tk.Tk()
cv = tk.Canvas(root, height=height, width=width)
cv.create_rectangle(0, 0, width, height, fill="black")
cv.pack()
root.after(50, show, cv)
root.mainloop()

import tkinter as tk
from PIL import Image, ImageTk
from time import time, sleep
from random import choice, uniform, randint
from math import sin, cos, radians
# 模拟重力
GRAVITY = 0.05
# 颜色选项(随机或者按顺序)
colors = ['red', 'blue', 'yellow', 'white', 'green', 'orange', 'purple', 'seagreen', 'indigo', 'cornflowerblue']
'''
particles 类
粒子在空中随机生成随机,变成一个圈、下坠、消失
属性:
- id: 粒子的id
- x, y: 粒子的坐标
- vx, vy: 在坐标的变化速度
- total: 总数
- age: 粒子存在的时长
- color: 颜色
- cv: 画布
- lifespan: 最高存在时长
'''
class Particle:
def __init__(self, cv, idx, total, explosion_speed, x=0., y=0., vx=0., vy=0., size=2., color='red', lifespan=2,
**kwargs):
self.id = idx
self.x = x
self.y = y
self.initial_speed = explosion_speed
self.vx = vx
self.vy = vy
self.total = total
self.age = 0
self.color = color
self.cv = cv
self.cid = self.cv.create_oval(
x - size, y - size, x + size,
y + size, fill=self.color)
self.lifespan = lifespan
def update(self, dt):
self.age += dt
# 粒子范围扩大
if self.alive() and self.expand():
move_x = cos(radians(self.id * 360 / self.total)) * self.initial_speed
move_y = sin(radians(self.id * 360 / self.total)) * self.initial_speed
self.cv.move(self.cid, move_x, move_y)
self.vx = move_x / (float(dt) * 1000)
# 以自由落体坠落
elif self.alive():
move_x = cos(radians(self.id * 360 / self.total))
# we technically don't need to update x, y because move will do the job
self.cv.move(self.cid, self.vx + move_x, self.vy + GRAVITY * dt)
self.vy += GRAVITY * dt
# 移除超过最高时长的粒子
elif self.cid is not None:
cv.delete(self.cid)
self.cid = None
# 扩大的时间
def expand(self):
return self.age <= 1.2
# 粒子是否在最高存在时长内
def alive(self):
return self.age <= self.lifespan
'''
循环调用保持不停
'''
def simulate(cv):
t = time()
explode_points = []
wait_time = randint(10, 100)
numb_explode = randint(6, 10)
# 创建一个所有粒子同时扩大的二维列表
for point in range(numb_explode):
objects = []
x_cordi = randint(50, 550)
y_cordi = randint(50, 150)
speed = uniform(0.5, 1.5)
size = uniform(0.5, 3)
color = choice(colors)
explosion_speed = uniform(0.2, 1)
total_particles = randint(10, 50)
for i in range(1, total_particles):
r = Particle(cv, idx=i, total=total_particles, explosion_speed=explosion_speed, x=x_cordi, y=y_cordi,
vx=speed, vy=speed, color=color, size=size, lifespan=uniform(0.6, 1.75))
objects.append(r)
explode_points.append(objects)
total_time = .0
# 1.8s内一直扩大
while total_time < 1.8:
sleep(0.01)
tnew = time()
t, dt = tnew, tnew - t
for point in explode_points:
for item in point:
item.update(dt)
cv.update()
total_time += dt
# 循环调用
root.after(wait_time, simulate, cv)
def close(*ignore):
"""退出程序、关闭窗口"""
global root
root.quit()
if __name__ == '__main__':
root = tk.Tk()
cv = tk.Canvas(root, height=1200, width=800)
# 选一个好看的背景会让效果更惊艳!
image = Image.open("./image.png")
photo = ImageTk.PhotoImage(image)
cv.create_image(0, 0, image=photo, anchor='nw')
cv.pack()
root.protocol("WM_DELETE_WINDOW", close)
root.after(100, simulate, cv)
root.mainloop()
