精彩悖论

马哲课结束时和恒恒讨论到君子和小人,突然觉得“我是小人。”这句话应该是个悖论。

我一向对悖论和递归很感兴趣,于是到出搜集了一些经典悖论陈列如下:

(1)1919年,罗素把他提出的集合论悖论通俗化如下的理发师悖论:

萨魏尔村有一位理发师,他给自己订下一条规则:他只给村子里自己不给自己刮胡子的人刮胡子。

请问他该不该给自己刮胡子?

(2)梵学者的预言:印度预言家的女儿,在纸上写了一件事(一句话),让他父亲预言这件事在下午三点钟以前是否发生,并一个卡片上写“是”或“不”。

此梵学者,在卡片上写了一个“是”字。

他女儿在纸上写的一句话是:“在下午三点钟之前,你将写一个‘不’字在卡片上。”

梵学者发现,他被女儿捉弄了,无论他写“是”或“不”都是错的,他根本不可能预言对

(3)意料之外的考试:他出现于20世纪40年代初。一位教授宣布:下周的某一天要进行一次“意料之外的考试”,并称没有一个学生能在考试的那天之前预测出考试的日期。

一个学生“证明”,考试不会一周最后一天进行,如若不然,则倒数第二天就可以推测出来了。以次类推,考试不可能在任何一天进行。

其错误是第一步,并不能推断出“考试不在最后一天进行”,他要这么推论,那么最后一天考试仍然是“意料之外的考试”。

(4) 理发师悖论

在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”

(5)书目悖论

一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名?

(6)苏格拉底悖论

苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。”

(7)纸牌悖论

纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。”而另一面却写着:“纸牌反面的句子是错的。”这是由英国数学家Jourdain提出来的。我们同样推不出结果来。它最简单的形式是:

(8)“如果说上帝是万能的,他能否创造一块他举不起来的大石头?”

(9)一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。”

(10)老子的:“知者不言,言者不知。”是一条悖论,被白居易一语道穿。白居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。若道老君是知者,缘何自着五千文?”

(11)“第二十二条军规”

这是一条臭名昭著的军规。它规定神经失常的飞行员可以停飞,但同时又规定申请停飞者必须头脑清醒。试想,一个神经失常的人不能申请,必须飞行;而头脑清醒者又怎么能证明他是神经失常?这纯粹是一条欺骗性的悖论。 (1)蠕虫爬 橡皮绳:一条蠕虫从1km长的橡皮绳一端以1cm/s的匀速向另一端爬行,而橡皮绳却每秒(匀速)伸长1km,如此下去,蠕虫会不会爬到橡皮绳的另一端 点?多数人凭直觉会认为蠕虫不会爬到终点,而这种直觉是错误的。因为橡皮绳是匀速伸长的,蠕虫也随之向前了,第一秒末爬了橡皮绳全长的1/100000 ,在第二秒末爬 1/200000,……类推得

1/100000(1+1/2+1/3+...+1/n+...)

当n充分大时,发散的调和级数的部分和可以等于(或超过)100000,而此时蠕虫就爬到了终点。

其值近似等于,这个时间比现在已知的宇宙年龄还要长,橡皮绳的长比已知的宇宙半径还要长。

(12)广义的芝诺悖论:

一盏灯,开一分钟,关半分钟,在开1/4分钟 ……如此下去,问最后灯是开着,还是关着。

哲学家马克斯.布莱克用另一种形式叙述:一个球在A盘中停一分钟,转到B中停 1/2 分钟,在传回A盘中停1/4 分钟,如此下去,最后球在哪一个盘中。此为抛球悖论。

(13)集合论悖论

“R是所有不包含自身的集合的集合。”

人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R。如果R包含自身的话,R又不属于R。

(14)“罗素是教皇”

从单纯的逻辑上来讲,荒谬的假设可以推论出任何荒谬的结论,哪怕推理过程无懈可击。有人曾经让罗素证明从“2+2=5”推出“罗素是教皇”。罗素证明如下:由于2+2=5,等式的两边同时减去2,得出2=3;两边同时再减去1,得出1=2;两边移位,得出2=1。

教皇与罗素是两个人,既然2=1,教皇和罗素就是1个人,所以“罗素就是教皇”。

这个荒谬的结论,就是由一个荒谬的假设引发出来的。

(15)一元钱到哪里去了?

三个学生住旅馆,服务员收费30元。因此一个学生拿出了10元。但是后来经理说今天特价,一共只收25元。服务生退还了学生3元并拿了2元的小费。结果每个学生只出了9元,一共27元,加上服务员的2元,才29元(3×9+2=29),那剩下的1元到哪里去了?

也有人把故事改编成这种形式:约翰推销他的旧电视30元给三位妇女,结果每个妇女拿出10元来。约翰发现他的电视只值25元,于是他拿出2元钱作运输费,将其他3元钱退还给那三位妇女一人1元。结果仍然是3×9+2=29,有1元钱不知去向。

这 问题很容易蒙住粗心的人,但仔细一点就可看出名堂来。每个学生实际出了9元,一共27元,其中25元是住宿费,剩下2元被服务员拿走,应该做减法3×9- 2=25。如果要做加法,则应该加上退还的3元,3×9+3=30,不正是起初服务员收的30元吗?因此根本不存在“一元钱到哪里去了”的问题。

你可能感兴趣的:(精彩悖论)