- Manus学习手册合集【建议收藏】
周师姐
学习pdf人工智能
这两天,一款通用AI智能体Manus还没发布就火了,因为还在内测中,用户需要邀请码才能够体验,这就导致原本免费的邀请码在二手平台最高被炒到8万8。相比于之前爆火的DeepSeek和ChatGPT这类AI对话工具,Manus是全球首款真正意义上的通用人工智能!没错,就是科幻电影里面能够独立思考,自主运行的人工智能!!manus学习资料:https://pan.xunlei.com/s/VOKk8Cq
- 10个热门AI API(2024年2月)
程序员后端
人工智能(AI)在当今数字时代发挥着重要的作用,为企业带来了全新的机遇和变革。AI不再是一种陌生的科技概念,而是已经渗透到各行各业,成为推动创新和提升效率的关键引擎。其核心优势在于能够处理大规模的数据、执行复杂的任务、模拟人类思维过程,并以前所未有的方式改善业务流程。AIAPI作为连接企业和强大AI技术的桥梁,扮演着至关重要的角色。通过使用AIAPI,企业能够快速、轻松地将先进的人工智能功能集成到
- 人工智能学习大纲
互联网搬砖老肖
AI原力计划工具使用人工智能学习
前言人工智能正以惊人的速度发展,其潜力既令人兴奋,也引人深思。它既可能为解决全球性问题带来希望,也可能带来前所未有的挑战。人工智能时代的到来已是不可逆转的趋势,科幻电影中的某些场景或许将成为现实。我对人工智能的研究越深入,就越能感受到它的强大力量。我所担忧的不仅仅是它对就业市场的冲击,更是它可能对人类社会结构带来的深远影响。未来,对人工智能的理解可能像今天对电脑操作的掌握一样重要。掌握人工智能技术
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 特斯拉FSD系统:自动驾驶的未来
百态老人
人工智能笔记
FSD系统概述FSD(FullSelf-Driving)系统是特斯拉研发的一套高级自动驾驶技术,旨在实现车辆在各种道路和驾驶场景下的完全自动驾驶。FSD系统通过集成先进的计算机视觉、深度学习、传感器融合等技术,利用车辆上安装的多种传感器和先进的计算机视觉技术,实现对周围环境的感知和理解。特斯拉通过不断收集和分析实际道路数据,持续优化其自动驾驶算法,使得FSD技术的安全性和可靠性得到了大幅提升.FS
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- Manus AI:全球首款通用型 AI Agent 的创新与挑战
萧鼎
python基础到进阶教程人工智能
1.引言:AIAgent时代的到来人工智能正在从单纯的对话式助手进化为更高级的智能体(Agent),能够自主完成任务,而不仅仅是提供信息或建议。2025年3月6日,由中国团队Monica推出的ManusAI正式亮相,号称全球首款通用型AIAgent(自主智能体)。与传统的AI助手相比,Manus不仅能够理解用户的自然语言指令,还能拆解任务、自动执行,并交付完整的成果。这标志着AI进入了一个新的发展
- 使用 Dlib 库进行人脸检测和人脸识别
萧鼎
python基础到进阶教程计算机视觉人工智能python人脸识别人脸检测
使用Dlib库进行人脸检测和人脸识别什么是Dlib?Dlib是一个广泛使用的C++库,提供了多种用于机器学习和计算机视觉的工具。它包含了人脸检测、人脸识别、物体检测、图像处理等功能。Dlib具有高效、易用的Python接口,因此它也被广泛应用于Python中进行深度学习和计算机视觉任务。安装Dlib首先,我们需要在Python环境中安装Dlib库。你可以通过pip进行安装:pipinstalldl
- AI与大数据融合:技术路径与行业赋能
互联网Ai好者
人工智能大数据
在数字化浪潮中,数据已成为驱动社会与商业变革的核心生产要素。据IDC预测,2025年全球数据总量将增长至175ZB,其中物联网设备、社交媒体及企业数字化系统贡献了80%的增量数据。面对海量异构数据的处理需求,传统分析工具已显现出明显局限:Gartner研究指出,仅35%的企业能有效利用其数据资产。在此背景下,人工智能技术通过算法突破与算力跃迁,正重塑大数据价值挖掘范式,构建从数据感知到决策闭环的全
- AI大模型在职业教育中的应用解决方案
中年猿人
人工智能ai学习
1.引言随着新经济、新技术的加速发展和经济结构的不断调整,职业教育迎来了新的发展机遇与挑战。传统的职业教育模式难以满足日益个性化、多样化的学习需求,同时,技术快速更迭使得职业技能更新频率大幅提高。这些变化要求职业教育能够更加灵活、高效地适应劳动力市场的需求,并为学生提供与时俱进的技能培养。人工智能(AI)作为一种前沿的科技趋势,其大模型技术通过强大的数据处理能力和学习算法,在众多行业中均展现了巨大
- 一文读懂!OpenCV 实时人脸识别从 0 到 1,小白也能轻松实操的超详细教程(完整教程及源码)
AI_DL_CODE
opencv人工智能计算机视觉人脸识别
摘要:本文围绕使用OpenCV实现实时人脸识别展开。从环境搭建入手,详细介绍Python及相关库的安装。数据准备环节涵盖收集、标注及预处理步骤。深入阐述特征提取、模型训练方法,包含传统与深度学习方式,还介绍OpenCV预训练模型的使用与评估。详细讲解实时识别过程,包括打开摄像头、逐帧处理及结果显示优化。针对复杂场景,提出光照、姿态、遮挡等问题的解决办法及模型更新维护策略。通过丰富代码示例与解释,助
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 企业数据挖掘平台×DeepSeek强强联合,多种应用场景适用
泰迪智能科技01
DeepSeek数据挖掘人工智能
企业数据挖掘建模平台简单易用,可提供代码方便定制,全面培训服务+丰富模型参考+专业建模人员支持服务。在科技飞速发展的今天,人工智能领域的每一次突破都如同投入湖面的巨石,激起层层波澜。DeepSeek作为大模型领域的璀璨新星,以其卓越的技术实力和创新的应用模式,成为了全球瞩目的焦点,也为高校教育、企业发展都带来了前所未有的机遇与变革。当数据挖掘平台×DeepSeek强强联合,又会碰撞出怎样的火花呢?
- Paper Reading | AI & 数据库融合经典论文回顾
数据库人工智能阅读
人工智能(AI)和数据库(DB)在过去的50年里得到了广泛的研究,随着数据库近年来的不断发展,数据库开始与人工智能结合,数据库和人工智能(AI)可以相互促进。一方面,AI可以使数据库更加智能化(AI4DB)。例如,传统的数据库优化技术无法满足大规模数据库实例、各种应用程序和多样化用户的高性能要求,尤其是在云上。幸运的是,基于机器学习的技术可以缓解这个问题。另一方面,数据库技术可以优化AI模型(DB
- 人工智能基础知识
yzx991013
人工智能
首先分为两大类:一:机器视觉cv1.特征比较明显2.经典模型:cnn,resnet,deepface,yolov(1-12),vi-transformer。缺点:不能解决收听问题。3.落地,无人识别,轨道追踪,无人驾驶,(主要解决看的东西)。二:自然语言处理nlp(语音识别)处理(文本)方面解决(说和听的问题),RNN,LSTM,attention,transformer(基于规则的翻译,超越普通
- C、C++ 与 C# 的区别及应用场景
xl.liu
c语言c++c#
C、C++与C#的区别及应用场景随着信息技术的快速发展,编程语言的选择对于项目成功至关重要。C、C++和C#是三种广泛使用的编程语言,它们各自具有独特的特点和适用领域。本文将基于当前IT行业的发展趋势,探讨这三种语言之间的主要差异,以及它们各自的优缺点和应用场景。IT行业的现状和发展趋势在当今的IT行业中,云计算、大数据、人工智能(AI)以及物联网(IoT)等技术正在引领新一轮的技术革新。这些技术
- 大模型不确定性量化与提示词校准
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型不确定性量化与提示词校准关键词大模型不确定性量化提示词校准自然语言处理计算机视觉推荐系统摘要本文旨在探讨大模型不确定性量化与提示词校准这一前沿技术。首先,我们将介绍大模型不确定性的背景及其重要性,然后深入探讨不确定性量化的原理和方法,以及提示词校准在其中的作用。通过具体案例分析,我们将展示这些技术在自然语言处理、计算机视觉和推荐系统等领域的应用。最后,我们将讨论实现大模型不确定性量化与提示词
- Agentic:基于DeepSeek V3与R1的智能代理技术深度解析
weixin_40941102
人工智能
引言人工智能的快速发展正在重塑我们的技术世界,而智能代理(Agentic)作为AI领域的新兴分支,正以其自主性、适应性和智能化特性吸引着越来越多的关注。与传统工具不同,Agentic技术赋予系统感知环境、推理决策并主动执行任务的能力,使其成为连接人类与数字世界的“智能助手”。在这一领域,DeepSeek推出了两款强大的模型:生成式文本模型DeepSeekV3和推理生成式文本模型DeepSeekR1
- 探索智能边界:深度求索(DeepSeek)技术全景解析与实战指南
瘸
deepseekai人工智能深度学习agi开发者工具
引言:智能时代的探路者在人工智能技术持续突破的2023年,一家名为深度求索(DeepSeek)的中国AI公司正在用独特的技术路径重新定义智能边界。这家专注实现AGI的年轻企业,凭借其开源的DeepSeek-R1系列模型和行业解决方案,正在开发者社区掀起新的技术浪潮。一、DeepSeek技术架构解析1.1模型体系全景图MoE架构创新:采用混合专家系统架构,实现135B参数的智能调度多模态融合:支持文
- AI学习预备知识-数据操作(5)内存节省
羞涩的小吉他
AI开发学习之路人工智能学习
AI学习预备知识-数据操作(5)内存节省提示:本系列持续更新中文章目录AI学习预备知识-数据操作(5)内存节省前言内存节省总结前言随着开始人工智能的学习越来越多,那么再学习过程中,我们应该有一定的基础知识储备,本系列为基础知识储备介绍,本文主要讲解AI学习储备知识–在数据操作过程中所需考虑到的内存节省。内存节省提示:默认使用python,数据操作使用mxnet在数据操作过程中运行一些操作可能会导致
- Fine-grained Analysis of Stability and Generalization for Stochastic Bilevel Optimization
再给一碗吧
已发表论文分享机器学习理论知识泛化理论双层优化
论文《Fine-grainedAnalysisofStabilityandGeneralizationforStochasticBilevelOptimization》IJCAI’2024《随机双层优化的细粒度稳定性和泛化性分析》会议介绍IJCAI(InternationalJointConferenceonArtificialIntelligence,国际人工智能联合会议)是人工智能领域的一个主
- 从零理解人工智能:技术原理、底层逻辑与手写数字识别实战
北辰alk
AI人工智能
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。https://www.captainbed.cn/north文章目录引言一、人工智能技术体系1.1核心技术栈二、神经网络底层逻辑2.1神经元数学模型2.2前向传播与反向传播三、手写数字识别实战(MNIST)3.1环境配置3.2数据预处理3.3CNN模型构建3.4模型训练与评估四、关键技术解析4.1卷
- (24-1)DeepSeek中的强化学习:DeepSeek简介
码农三叔
强化学习从入门到实践transformer人工智能大模型架构强化学习DeepSeek
在人工智能的浩瀚星空中,DeepSeek犹如一座巍峨的科技丰碑,熠熠生辉,引领着大模型时代的风云变幻。DeepSeek以卓越的创新精神和前沿的技术架构,突破常规极限,将海量知识与智能推理完美融合,展现出惊人的计算力与思维深度。4.1DeepSeek简介DeepSeek是一家成立于2023年的中国人工智能初创公司,专注于开发高效且经济的大型语言模型。其核心技术包括多头潜在注意力(Multi-head
- 计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
程序员Linc
计算机视觉计算机视觉机器学习深度学习机器视觉
一、计算机视觉(CV)与机器视觉(MV):从学术研究到工业落地的分水岭1.定义与目标差异计算机视觉(CV)目标是赋予计算机类似人类的视觉理解能力,通过算法对图像或视频中的目标进行识别、跟踪和语义理解。其核心是研究如何从二维图像反推三维世界的结构和规律。例如,自动驾驶中通过多摄像头融合实现道路场景理解,属于典型的CV任务。机器视觉(MV)聚焦于工业场景的自动化检测与控制,强调实时性和精准性。MV系统
- 【人工智能】大模型的Scaling Laws(缩放定律),通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。
本本本添哥
013-AIGC人工智能大模型人工智能深度学习机器学习
缩放定律(ScalingLaws)是人工智能领域中关于大模型性能提升的重要理论,其核心思想是通过增加模型规模(如参数数量)、训练数据量和计算资源来提升模型性能。这一理论最早由OpenAI在2020年提出,并在随后的研究中得到了广泛验证和应用。ScalingLaws就像是指导手册一样,告诉我们在构建和训练AI模型时应该注意什么,以最经济有效的方式得到最好的成果。这有助于推动技术进步的同时也促进了可持
- DeepSeek驱动的敏捷开发新范式:追逐太阳的鱼缸窗口效应——透明化开发与动态优化的生态重构
天街小雨润如苏同学
敏捷流程重构
引言在数字化浪潮的冲击下,软件系统的复杂性已远超传统管理方法的承载极限。"鱼缸窗口"隐喻所指向的完全透明、动态可视的开发环境,与"追逐太阳"所象征的持续价值追寻,共同勾勒出敏捷开发的新边疆。DeepSeek作为认知增强型人工智能,通过构建光速反馈的信息生态与自适应优化机制,正在将这种隐喻转化为工程实践。本文揭示该技术如何重塑敏捷开发的底层逻辑,创造开发者、系统与环境三者共生的新型态。一、技术架构的
- RK3568与掌静脉模块:解锁安防新未来
计算机学长
瑞星微芯片AndroidRK3568Android
引言在当今数字化时代,随着人工智能和物联网技术的飞速发展,各类智能设备如雨后春笋般涌现,为我们的生活和工作带来了极大的便利。在这些智能设备的背后,高性能的处理器和先进的生物识别技术起着关键作用。RK3568处理器作为一款中高端的芯片,以其出色的性能和丰富的接口,在物联网、安防监控、智能家居等众多领域得到了广泛应用。而掌静脉模块作为一种高精度、高安全性的生物识别技术,正逐渐成为身份验证和安全控制领域
- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- (视频演示)基于OpenCV的实时视频跟踪火焰识别软件V1.0源码及exe下载
是刃小木啦~
opencv人工智能计算机视觉
本文介绍了基于OpenCV的实时视频跟踪火焰识别软件,该软件通过先进的图像处理技术实现对实时视频中火焰的检测与跟踪,同时支持导入图片进行火焰识别。主要功能包括相机选择、实时跟踪和图片模式。软件适用于多种场合,用于保障人民生命财产安全。源码及exe文件可通过蓝奏云网盘下载。软件简介《基于OpenCV的实时视频跟踪火焰识别软件》是一款创新的计算机视觉应用软件,旨在通过先进的图像处理技术实现对实时视频中
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,