【数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂]

前言

大家好吖,欢迎来到 YY 滴数据结构系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁
主要内容含:
【数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂]_第1张图片

欢迎订阅 YY滴数据结构专栏!更多干货持续更新!以下是传送门!

目录

  • 一.二叉搜索树的基本概念
  • 二.增删查改基本操作
    • 1.二叉搜索树的查找(分析&代码演示)
      • 分析
      • 代码演示
    • 2.二叉搜索树的插入(分析&代码演示)
      • 分析
      • 代码演示
    • 3.二叉搜索树的删除【※核心重点】(分析&代码演示)
      • 分析
      • 代码演示
    • 4.二叉搜索树的中序遍历(分析&代码演示)
      • 分析
      • 代码演示
  • 三.二叉搜索树的性能问题:需要AVL树...红黑树...
  • 四.二叉搜索树的完整实现代码演示
  • 五.进阶二叉树习题传送门

一.二叉搜索树的基本概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  1. 若它的左子树不为空,则 左子树 上所有节点的值都 小于 根节点的值
  2. 若它的右子树不为空,则 右子树 上所有节点的值都 大于 根节点的值
  3. 它的 左右子树 也分别为二叉搜索树 ;
    【数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂]_第2张图片

二.增删查改基本操作

【数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂]_第3张图片

//结点模板
template<class K>
struct BSTreeNode
{
	BSTreeNode<K>* _left;
	BSTreeNode<K>* _right;
	K _key;

	BSTreeNode(const K& key)
		:_left(nullptr)
		,_right(nullptr)
		,_key(key)
	{}
};
//在二叉搜索树模板中
typedef BSTreeNode<K> Node;

1.二叉搜索树的查找(分析&代码演示)

分析

  • 从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找
  • 最多查找高度次 ,走到到空,还没找到,这个值不存在。

代码演示

//查找操作
	bool Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)//从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找 
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return true;
			}
		}

		return false;//最多查找高度次 ,走到到空,还没找到,这个值不存在。
	}

2.二叉搜索树的插入(分析&代码演示)

分析

  • 树为空,则直接新增节点,赋值给root指针
  • 树不空, 按二叉搜索树性质的查找方式(前后指针) 找到插入位置,插入新节点

代码演示

//插入操作
	bool Insert(const K& key)
	{
	//树为空,则直接新增节点,赋值给root指针
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}
		
	//树不空, 按二叉搜索树性质的查找方式(前后指针) 找到插入位置,插入新节点
		Node* parent = nullptr;//后指针
		Node* cur = _root;//前指针
		while (cur)
		{
			if (cur->_key < key)//比keycur的_key大,往右走
			{
				parent = cur;
				cur = cur->_right;
			}
			else if(cur->_key > key)//比keycur的_key小,往左走
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
//cur走到空了,开始给插入的key值创建结点,根据其比后一个结点(parent)大还是小,决定其是插在左还是右
		cur = new Node(key); 
		if (parent->_key < key)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		return true;
	}

3.二叉搜索树的删除【※核心重点】(分析&代码演示)

分析

  • 首先查找元素是否在二叉搜索树中,如果不存在,则返回
  • 否则要删除的结点可能分下面四种情况:
  1. 要删除的结点无孩子结点
  2. 要删除的结点只有左孩子结点
  3. 要删除的结点只有右孩子结点
  4. 要删除的结点有左、右孩子结点
    【数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂]_第4张图片
  • 对上面四种情况整理后(1与2,3分别结合),剩下下面2种情况(直接删除,替换法),分出3种具体情况(直接删除占两种):
    【数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂]_第5张图片
  • 直接删除情况: 只有左/右/无孩子结点(无孩子,只有一个孩子)
    (双亲结点指向被删除节点的左还是右————取决于被删除节点是其双亲节点的左还是右节点)
  • 情况1:被删除节点是其双亲节点的左节点,删除该结点且使被删除节点的双亲结点指向被删除节点的 左孩子 结点
  • 情况2:被删除节点是其双亲节点的右节点,删除该结点且使被删除节点的双亲结点指向被删除结点的 右孩子 结点
    【数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂]_第6张图片
  • 还要考虑结点为根结点情况:
    【数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂]_第7张图片
  • 替换法情况:【※核心难点】 (有两个孩子)
  • 情况3 :在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题
  • 分析:要 找到左子树的最大(右)结点,或者 右子树的最小(左)结点(下图演示中是找到左子树的最大结点)
  • 具体过程分析:
  1. 设置前后指针,留一个cur指针指向要删除结点,parent指针跟着LeftMax指针向下逐个移动
  2. 找到leftMax以后,交换其和cur的数值,(收完尾后,最后一步再将指针也一同转移)
  3. 要分为两种情况(如下图所示) (1) leftMax指针的左指针为空,(2) leftMax指针的左指针不为空
    (为什么不用讨论右指针呢?因为leftMax的右指针必定为空,否则leftMax会继续向下移动)
  4. 因为采用的是前后指针法,所以这时留下的后指针(parent)就对应指向leftMax的左/右结点
  5. 最后将cur指针指向leftMax,leftMax动不动无所谓
    【数据结构】超详细一文带小白轻松全面理解 [ 二叉搜索树 ]—— [从零实现&逐过程分析&代码演示&简练易懂]_第8张图片

代码演示

//删除操作
	bool Erase(const K& key)
	{
		Node* parent = nullptr;//后指针
		Node* cur = _root;//前指针

		while (cur)
		{
//通过二叉搜索树规则向下查找
			if (cur->_key < key)      
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
//直接删除情况:只有左/右/无孩子结点
//(双亲结点指向被删除节点的左还是右————取决于被删除节点是其双亲节点的左还是右节点) 
			else // 找到了
			{
				 // 左为空      
				if (cur->_left == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_right;
					}
					else
					{
						if (parent->_right == cur)//被删除节点是其双亲节点的右节点   
						{
							parent->_right = cur->_right;//删除该结点且使被删除节点的双亲结点指向被删除结点的 右孩子 结点
						}
						else//被删除节点是其双亲节点的左节点  
						{
							parent->_left = cur->_right;//删除该结点且使被删除节点的双亲结点指向被删除结点的 左孩子 结点
						}
					}
				}
				// 右为空    
				else if (cur->_right == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						if (parent->_right == cur)
						{
							parent->_right = cur->_left;
						}
						else
						{
							parent->_left = cur->_left;
						}
					}					
				} 

// 替换法情况:左右都不为空 
				else
				{
					// 找替代节点
					Node* parent = cur;
					Node* leftMax = cur->_left;
					while (leftMax->_right)
					{
						parent = leftMax;
						leftMax = leftMax->_right;
					}

					swap(cur->_key, leftMax->_key);

					if (parent->_left == leftMax)
					{
						parent->_left = leftMax->_left;
					}
					else
					{
						parent->_right = leftMax->_left;
					}

					cur = leftMax;
				}
				delete cur;
				return true;
			}
		}

		return false;
	}

4.二叉搜索树的中序遍历(分析&代码演示)

分析

  • 中序遍历要从通过模板实例化的树中调用中序遍历函数
  • 需要传根结点指针,但是 根结点指针是在private域中,域外不能直接传一个根结点指针 ,所以要引入_InOrder函数,在二叉搜索树模板中 再次封装一层

代码演示

void TestBSTree1()
{
	int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	BSTree<int> t;
	for (auto e : a)
	{
		t.Insert(e);
	}

	t.InOrder();  //需要传根结点指针,但是根结点指针是在private域中,域外不能直接传一个根结点指针,
	              //所以要引入_InOrder函数,在二叉搜索树模板中再次封装一层
}
//中序遍历——————————————————————————————————————————为了解决中序要传入根节点的问题,引入_InOrder函数
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	void _InOrder(Node* root)
	{
		if (root == NULL)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}

三.二叉搜索树的性能问题:需要AVL树…红黑树…

  • 插入和删除操作都必须先 查找,查找效率代表了二叉搜索树中各个操作的性能
  • 当二叉搜索树 退化为单支时,其效率为O(N),二叉搜索树的性能就失去了
  • 对二叉搜索树进行改进后,得到的AVL树红黑树效率为 Log(N)

四.二叉搜索树的完整实现代码演示

//结点模板
template<class K>
struct BSTreeNode
{
	BSTreeNode<K>* _left;
	BSTreeNode<K>* _right;
	K _key;

	BSTreeNode(const K& key)
		:_left(nullptr)
		,_right(nullptr)
		,_key(key)
	{}
};

//二叉搜索树类模板
template<class K>
class BSTree
{
	typedef BSTreeNode<K> Node;
public:

//初始化列表
	BSTree()
		:_root(nullptr)
	{}
	

//查找操作
	bool Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return true;
			}
		}

		return false;
	}

//插入操作
	bool Insert(const K& key)
	{
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if(cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(key);
		if (parent->_key < key)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		return true;
	}


//删除操作
	bool Erase(const K& key)
	{
		Node* parent = nullptr;//后指针
		Node* cur = _root;//前指针

		while (cur)
		{
//通过二叉搜索树规则向下查找
			if (cur->_key < key)      
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
//直接删除情况:只有左/右/无孩子结点
//(双亲结点指向被删除节点的左还是右————取决于被删除节点是其双亲节点的左还是右节点) 
			else // 找到了
			{
				 // 左为空      
				if (cur->_left == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_right;
					}
					else
					{
						if (parent->_right == cur)//被删除节点是其双亲节点的右节点   
						{
							parent->_right = cur->_right;//删除该结点且使被删除节点的双亲结点指向被删除结点的 右孩子 结点
						}
						else//被删除节点是其双亲节点的左节点  
						{
							parent->_left = cur->_right;//删除该结点且使被删除节点的双亲结点指向被删除结点的 左孩子 结点
						}
					}
				}
				// 右为空    
				else if (cur->_right == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						if (parent->_right == cur)
						{
							parent->_right = cur->_left;
						}
						else
						{
							parent->_left = cur->_left;
						}
					}					
				} 

// 替换法情况:左右都不为空 
				else
				{
					// 找替代节点
					Node* parent = cur;
					Node* leftMax = cur->_left;
					while (leftMax->_right)
					{
						parent = leftMax;
						leftMax = leftMax->_right;
					}

					swap(cur->_key, leftMax->_key);

					if (parent->_left == leftMax)
					{
						parent->_left = leftMax->_left;
					}
					else
					{
						parent->_right = leftMax->_left;
					}

					cur = leftMax;
				}

				delete cur;
				return true;
			}
		}

		return false;
	}


//中序遍历——————————————————————————————————————————为了解决中序要传入根节点的问题,引入_InOrder函数
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	void _InOrder(Node* root)
	{
		if (root == NULL)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}


private:
	Node* _root;
};


void TestBSTree1()
{
	int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	BSTree<int> t;
	for (auto e : a)
	{
		t.Insert(e);
	}

	t.InOrder();

	t.Erase(4);
	t.InOrder();

	t.Erase(6);
	t.InOrder();

	t.Erase(7);
	t.InOrder();

	t.Erase(3);
	t.InOrder();

	for (auto e : a)
	{
		t.Erase(e);
	}
	t.InOrder();
}

五.进阶二叉树习题传送门

你可能感兴趣的:(YY滴,《数据结构》,c++,开发语言,数据结构)