中心平滑:经过认证的具有结构化输出的网络的鲁棒性
写完笔记之后最后填,概述文章的内容,以后查阅笔记的时候先看这一段。
center smooth:对于给定的输入 x x x 与函数 f f f,以及对 x x x 的 l 2 l_2 l2 扰动半径 ϵ 1 \epsilon_1 ϵ1。中心平滑的目的是:在输出空间中计算一个最小半径为 r r r 的包围球,该球的球心为 f ˉ ( x ) \bar{f}(\boldsymbol{x}) fˉ(x),这时候的最小包围球包含至少一半的 f ( x + N ( 0 , σ c s 2 I ) ) f\left(\boldsymbol{x}+\mathcal{N}\left(0, \sigma_{c s}^2 I\right)\right) f(x+N(0,σcs2I))。这时候的 f ˉ \bar{f} fˉ 为 f f f 平滑函数, f ˉ ( x ) \bar{f}(\boldsymbol{x}) fˉ(x)为 f ( x ) f(x) f(x)在点 x x x 的平滑输出结果。整个过程如下表示:
∀ x ′ s.t. ∥ x − x ′ ∥ 2 ≤ ϵ 1 , d ( f ˉ ( x ) , f ˉ ( x ′ ) ) ≤ ϵ 2 \forall x^{\prime} \text { s.t. }\left\|x-x^{\prime}\right\|_2 \leq \epsilon_1, d\left(\bar{f}(x), \bar{f}\left(x^{\prime}\right)\right) \leq \epsilon_2 ∀x′ s.t. ∥x−x′∥2≤ϵ1,d(fˉ(x),fˉ(x′))≤ϵ2
意义在于:给定输入的扰动范围为 ϵ 1 \epsilon_1 ϵ1,经过平滑后的 f ˉ \bar{f} fˉ 能可证明地保证输出变化在 $ \epsilon_2$ 内。解决了 Randomized Smoothing只能局限于具有一维实值输出的分类任务和模型,从而能扩展到可证明的结构化输出(图像、文本、集合)问题。
作者的研究目标。
结构化输出(图像、文本、集合)的可证明鲁棒性
问题陈述,要解决什么问题?
解决问题的方法/算法是什么?
定义 P \mathcal P P 下 f f f 的平滑版本 f ˉ \bar{f} fˉ 作为在 M M M 中半径最小的球的中心,该球至少包含一半的 f ( x + P ) f (x + \mathcal P) f(x+P) 概率质量:
f ˉ P ( x ) = argmin z r s.t. P [ f ( X ) ∈ B ( z , r ) ] ≥ 1 2 \bar{f}_{\mathcal{P}}(x)=\underset{z}{\operatorname{argmin}} r \text { s.t. } \mathbb{P}[f(X) \in \mathcal{B}(z, r)] \geq \frac{1}{2} fˉP(x)=zargminr s.t. P[f(X)∈B(z,r)]≥21
B ( z , r ) = { z ′ ∣ d ( z , z ′ ) ≤ r } \mathcal{B}(z, r)=\left\{z^{\prime} \mid d\left(z, z^{\prime}\right) \leq r\right\} B(z,r)={z′∣d(z,z′)≤r}
center smooth:
∀ x ′ s.t. ∥ x − x ′ ∥ 2 ≤ ϵ 1 , P [ f ( X ′ ) ∈ B ( f ˉ ( x ) , R ) ] > 1 2 \forall x^{\prime} \text { s.t. }\left\|x-x^{\prime}\right\|_2 \leq \epsilon_1, \mathbb{P}\left[f\left(X^{\prime}\right) \in \mathcal{B}(\bar{f}(x), R)\right]>\frac{1}{2} ∀x′ s.t. ∥x−x′∥2≤ϵ1,P[f(X′)∈B(fˉ(x),R)]>21
d ( f ˉ ( x ) , f ˉ ( x ′ ) ) ≤ 2 R d\left(\bar{f}(x), \bar{f}\left(x^{\prime}\right)\right) \leq 2 R d(fˉ(x),fˉ(x′))≤2R
d ( f ˉ ( x ) , f ˉ ( x ′ ) ) ≤ d ( f ˉ ( x ) , y ) + d ( y , f ˉ ( x ′ ) ) ≤ R + r ∗ ( x ′ ) \begin{aligned} d\left(\bar{f}(x), \bar{f}\left(x^{\prime}\right)\right) & \leq d(\bar{f}(x), y)+d\left(y, \bar{f}\left(x^{\prime}\right)\right) \\ & \leq R+r^*\left(x^{\prime}\right) \end{aligned} d(fˉ(x),fˉ(x′))≤d(fˉ(x),y)+d(y,fˉ(x′))≤R+r∗(x′)
r ∗ ( x ′ ) ≤ R r^*\left(x^{\prime}\right) \leq R r∗(x′)≤R
B ( f ˉ ( x ′ ) , r ∗ ( x ′ ) ) \mathcal{B}(\bar{f}(x'),r^*(x')) B(fˉ(x′),r∗(x′)): f ˉ ( x ′ ) \bar{f}(x') fˉ(x′) 为半径最小的球的中心,至少包含 f ( x ′ + P ) f (x' + P) f(x′+P) 概率质量的一半, r ∗ ( x ′ ) r^*(x') r∗(x′) 为最小半径的值
$ \mathcal{B}(\bar{f}(x),R) : : :\bar{f}(x)$ 为球的中心,对于所有满足 ∥ x − x ′ ∥ 2 ≤ ⋅ ϵ 1 \|x-x'\|_2\overset{\cdot}{\leq}\epsilon_1 ∥x−x′∥2≤⋅ϵ1 的 x ′ x′ x′,包含 f ( x ′ + P ) f (x′ + P) f(x′+P) 的概率质量的一半以上, R R R 为球的半径。
上述结果从理论上为我们提供了 f f f 的平滑版本 f ˉ \bar{f} fˉ,具有可证明的鲁棒性保证。因为经过平滑后的 f ˉ ( x ) \bar{f}(x) fˉ(x)与所有 f ( x + N ( 0 , σ c s 2 I ) ) f\left(\boldsymbol{x}+\mathcal{N}\left(0, \sigma_{c s}^2 I\right)\right) f(x+N(0,σcs2I))的中心距离能够被bound住,因为一个对抗扰动很难去改变 f ( x + N ( 0 , σ c s 2 I ) ) f\left(\boldsymbol{x}+\mathcal{N}\left(0, \sigma_{c s}^2 I\right)\right) f(x+N(0,σcs2I))的中心,所以平滑版本的 f ˉ \bar{f} fˉ能够保证输出的变化的上限。
作者如何评估自己的方法,有没有问题或者可以借鉴的地方。
作者给了哪些strong conclusion, 又给了哪些weak conclusion?
在这些框架外额外需要记录的笔记。
h ˉ ( x ) = argmax c ∈ Y P [ h ( x + δ ) = c ] \bar{h}(x)=\underset{c \in \mathcal{Y}}{\operatorname{argmax}} \mathbb{P}[h(x+\delta)=c] hˉ(x)=c∈YargmaxP[h(x+δ)=c]
p ϵ = Φ ( Φ − 1 ( p ) − ϵ / σ ) p_\epsilon=\Phi\left(\Phi^{-1}(p)-\epsilon / \sigma\right) pϵ=Φ(Φ−1(p)−ϵ/σ)
累计分布函数 Φ \Phi Φ(CDF)是概率分布函数(PDF)的积分。这很好理解。
逆累计分布函数 Φ − 1 \Phi^{-1} Φ−1(ICDF)简单地说,是累计分布函数的反函数。
CDF:已知横轴(某一事件)(值)求纵轴(概率);
ICDF:已知纵轴(概率)求横轴(某一事件)(值);
以下是常用希腊字母及其在数学、统计学和科学中的读法:
在概率论中,霍夫丁不等式给出了随机变量的和与其期望值偏差的概率上限,该不等式被Wassily Hoeffding于1963年提出并证明。霍夫丁不等式是Azuma-Hoeffding不等式的特例,它比Sergei Bernstein于1923年证明的Bernstein不等式更具一般性。这几个不等式都是McDiarmid不等式的特例。
掷硬币,假设正面朝上概率为 p ,反面朝上概率为 1-p ,投掷 n 次,则正面朝上次数的期望值为 np 。更进一步,有以下不等式:
P ( H ( n ) ≤ k ) = ∑ i = 0 k ( n i ) p i ( 1 − p ) n − i P(H(n) \le k)=\sum_{i=0}^k \binom{n}{i} p^i (1-p)^{n-i}\\ P(H(n)≤k)=i=0∑k(in)pi(1−p)n−i
其中, H(n) 是 n 次投掷中,正面朝上的次数。
对某一 ε > 0 \varepsilon>0 ε>0 ,有 k = ( p − ε ) n k=(p-\varepsilon)n k=(p−ε)n ,上述不等式确定的霍夫丁上界将会按照指数级变化:
P ( H ( n ) ≤ ( p − ε ) n ) ≤ e x p ( − 2 ε 2 n ) ( 2.1.1 ) P(H(n) \le (p-\varepsilon)n) \le exp(-2 \varepsilon^2n) \quad (2.1.1)\\ P(H(n)≤(p−ε)n)≤exp(−2ε2n)(2.1.1)
类似地,可以得到:
P ( H ( n ) ≥ ( p + ε ) n ) ≤ e x p ( − 2 ε 2 n ) ( 2.1.2 ) P(H(n) \ge (p+\varepsilon)n) \le exp(-2 \varepsilon^2n) \quad (2.1.2)\\ P(H(n)≥(p+ε)n)≤exp(−2ε2n)(2.1.2)
综合(2.1.1)(2.1.2),可得:
P ( ( p − ε ) n ≤ H ( n ) ≤ ( p + ε ) n ) ≥ 1 − 2 e x p ( − 2 ε 2 n ) ( 2.1.3 ) P((p-\varepsilon)n\le H(n) \le (p+\varepsilon)n) \ge 1-2exp(-2 \varepsilon^2n) \quad (2.1.3)\\ P((p−ε)n≤H(n)≤(p+ε)n)≥1−2exp(−2ε2n)(2.1.3)
令 ε = ln n / n \varepsilon=\sqrt{\ln{n}/n} ε=lnn/n ,代入(2.1.3),有:
P ( ∣ H ( n ) − p n ∣ ≤ ln n / n ) ≥ 1 − 2 e x p ( − 2 ln n ) = 1 − 2 / n 2 ( 2.1.4 ) P(|H(n)-pn|\le \sqrt{\ln{n}/n})\ge 1-2exp(-2\ln n)=1-2/n^2 \quad (2.1.4) P(∣H(n)−pn∣≤lnn/n)≥1−2exp(−2lnn)=1−2/n2(2.1.4)
(2.1.4)即为霍夫丁不等式的伯努利随机变量特例。
令 X 1 , … , X n X_1,\dots,X_n X1,…,Xn 为独立的随机变量,且 X i ∈ [ a , b ] , i = 1 , … , n X_i\in[a,b] , i=1,\dots,n Xi∈[a,b],i=1,…,n 。这些随机变量的经验均值可表示为:
X ˉ = X 1 + ⋯ + X n n \bar{X}=\frac{X_1+\dots+X_n}{n}\\ Xˉ=nX1+⋯+Xn
霍夫丁不等式叙述如下:
∀ t > 0 , P ( X ˉ − E [ X ˉ ] ≥ t ) ≤ e x p ( − 2 n 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) ( 2.2.1 ) \forall{t>0},\quad P(\bar{X}-E[\bar{X}]\ge t)\le exp(-\frac{2n^2t^2}{\begin{matrix} \sum_{i=1}^n (b_i-a_i)^2 \end{matrix}}) \quad(2.2.1)\\ ∀t>0,P(Xˉ−E[Xˉ]≥t)≤exp(−∑i=1n(bi−ai)22n2t2)(2.2.1)
令 X ˉ = − X ˉ \bar{X}=-\bar{X} Xˉ=−Xˉ ,代入上述不等式,可得:
∀ t > 0 , P ( E [ X ˉ ] − X ˉ ≥ t ) ≤ e x p ( − 2 n 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) ( 2.2.2 ) \forall{t>0},\quad P(E[\bar{X}]-\bar{X}\ge t)\le exp(-\frac{2n^2t^2}{\begin{matrix} \sum_{i=1}^n (b_i-a_i)^2 \end{matrix}}) \quad (2.2.2)\\ ∀t>0,P(E[Xˉ]−Xˉ≥t)≤exp(−∑i=1n(bi−ai)22n2t2)(2.2.2)
综合(2.2.1)(2.2.2),可得霍夫丁不等式的另一种形式:
∀ t > 0 , P ( ∣ X ˉ − E [ X ˉ ] ∣ ≥ t ) ≤ 2 e x p ( − 2 n 2 t 2 ∑ i = 1 n ( b i − a i ) 2 ) ( 2.2.3 ) \forall{t>0},\quad P(|\bar{X}-E[\bar{X}]|\ge t)\le 2exp(-\frac{2n^2t^2}{\begin{matrix} \sum_{i=1}^n (b_i-a_i)^2 \end{matrix}}) \quad (2.2.3)\\ ∀t>0,P(∣Xˉ−E[Xˉ]∣≥t)≤2exp(−∑i=1n(bi−ai)22n2t2)(2.2.3)
若令 S n = X 1 + ⋯ + X n S_n=X_1+\dots+X_n Sn=X1+⋯+Xn ,霍夫丁不等式可叙述为:
$$
\forall{t>0},\quad P(S_n-E[S_n]\ge t)\le exp(-\frac{2t^2}{\begin{matrix} \sum_{i=1}^n (b_i-a_i)^2 \end{matrix}}) \quad (2.2.4)\
\forall{t>0},\quad P(E[S_n]-S_n\ge t)\le exp(-\frac{2t^2}{\begin{matrix} \sum_{i=1}^n (b_i-a_i)^2 \end{matrix}}) \quad (2.2.5)\
\forall{t>0},\quad P(|S_n-E[S_n]|\ge t)\le 2exp(-\frac{2t^2}{\begin{matrix} \sum_{i=1}^n (b_i-a_i)^2 \end{matrix}}) \quad (2.2.6)\
$$
从(2.2.1)推导(2.2.4),只需对不等式 X ˉ − E [ X ˉ ] ≥ t \bar{X}-E[\bar{X}]\ge t Xˉ−E[Xˉ]≥t 左右两边同乘系数 n n n ,再令 t = n t t=nt t=nt 即可。不难看出,当 X i X_i Xi 为伯努利随机变量时,(2.2.6)即可转化为(2.1.4)。
需要注意的是, X i X_i Xi 若为无放回抽样时的随机变量,该等式依然成立,尽管此时这些随机变量已不再独立。相关证明可查看Hoeffding在1963年发表的论文。在无放回抽样时,若想要更好的概率边界,可查看Serfling在1974年发表的论文。
学习链接:https://zhuanlan.zhihu.com/p/45342697
随机变量时,(2.2.6)即可转化为(2.1.4)。
需要注意的是, X i X_i Xi 若为无放回抽样时的随机变量,该等式依然成立,尽管此时这些随机变量已不再独立。相关证明可查看Hoeffding在1963年发表的论文。在无放回抽样时,若想要更好的概率边界,可查看Serfling在1974年发表的论文。
学习链接:https://zhuanlan.zhihu.com/p/45342697