#引用所需要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.optim as optim#优化器
#过滤警告
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
#读取数据
features=pd.read_csv("temps.csv")
#查看数据的格式
features.shape
features.head()#展示前五行数据
数据表中
#处理时间数据
import datetime
#分别得到年月日
years=features['year']
months=features['month']
days=features['day']
#datetime格式
dates=[str(int(year)) + '-' + str(int(month)) + '-'+str(int(day)) for year,month,day in zip(years,months,days)]
dates=[datetime.datetime.strptime(date,'%Y-%m-%d') for date in dates]
这段代码将年月日数据转换为datetime格式,可以方便地对时间数据进行处理和分析。
查看datetime的数据格式
画图:
# 准备画图
# 指定默认风格
plt.style.use('fivethirtyeight')
# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45)
# 标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
# 我的逗逼朋友
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
plt.tight_layout(pad=2)
独热编码
#独热编码
features=pd.get_dummies(features)
features.head()
标签
#标签
labels=np.array(features['actual'])
#在特征中去掉标签
features=features.drop('actual',axis=1)
#名字单独保存一下,以防丢失
feature_list=list(features.columns)
#转化成合适的形式
featuresa=np.array(features)
标准化处理
#标准化处理
from sklearn import preprocessing
input_features=preprocessing.StandardScaler().fit_transform(features)
#手动构造网络模型
x=torch.tensor(input_features,dtype=float)
y=torch.tensor(labels,dtype=float)
#权重参数初始化
weights=torch.randn((14,128),dtype=float,requires_grad=True)
biases=torch.randn(128,dtype=float,requires_grad=True)
weights2=torch.randn((128,1),dtype=float,requires_grad=True)
biases2=torch.randn(1,dtype=float,requires_grad=True)
learning_rate=0.001#学习率
losses=[]
for i in range(1000):
#计算隐层
hidden=x.mm(weights)+biases
#加入激活函数
hidden=torch.relu(hidden)
#预测结果
predictions=hidden.mm(weights2)+biases2
#计算损失
loss=torch.mean((predictions-y) **2)
losses.append(loss.data.numpy())
#打印损失值
if i % 100 == 0:
print('loss:',loss)
#反向传播计算
loss.backward()
#更新参数
weights.data.add_(- learning_rate * weights.grad.data)
biases.data.add_(- learning_rate * biases.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases2.data.add_(- learning_rate * biases2.grad.data)
# 每次迭代都得记得清空
weights.grad.data.zero_()
biases.grad.data.zero_()
weights2.grad.data.zero_()
biases2.grad.data.zero_()
更简单的构建网络模型
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(
torch.nn.Linear(input_size, hidden_size),
torch.nn.Sigmoid(),
torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
# 训练网络
losses = []
for i in range(1000):
batch_loss = []
# MINI-Batch方法来进行训练
for start in range(0, len(input_features), batch_size):
end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)
yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)
prediction = my_nn(xx)
loss = cost(prediction, yy)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
batch_loss.append(loss.data.numpy())
# 打印损失
if i % 100==0:
losses.append(np.mean(batch_loss))
print(i, np.mean(batch_loss))
x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})
# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]
test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]
predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)})
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')
# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60');
plt.legend()
# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');