C++——TCP和UDP协议(上)

1.前言

OSI七层模型:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层     

口诀: “物数网传会表应”

面试中经常问的 TCP 和 UDP(属于传输层协议) 的区别,简单总结如下:

TCP 和 UDP 的区别:

  • TCP面向连接(如打电话要先拨号建立连接); UDP是无连接的,即发送数据之前不需要建立连接
  • UDP程序结构较简单
  • TCP 是面向字节流的,UDP 是基于报文的
  • TCP 保证数据可靠性,UDP不可靠性,可能丢包
  • TCP 保证按序发送,UDP 不保证
  • TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
  • TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道

2.TCP协议

TCP 的建立连接称为三次握手

C++——TCP和UDP协议(上)_第1张图片

第一次握手:建立连接时,客户端发送syn包(seq=x)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(seq=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。

TCP 的断开连接称为四次握手

C++——TCP和UDP协议(上)_第2张图片

  • 第一次挥手:客户端发出释放FIN=1,自己序列号seq=u,进入FIN-WAIT-1状态
  • 第二次挥手:服务器收到客户端的后,发出ACK=1确认标志和客户端的确认号ack=u+1,自己的序列号seq=v,进入CLOSE-WAIT状态
  • 第三次挥手:客户端收到服务器确认结果后,进入FIN-WAIT-2状态。此时服务器发送释放FIN=1信号,确认标志ACK=1,确认序号ack=u+1,自己序号seq=w,服务器进入LAST-ACK(最后确认态)
  • 第四次挥手:客户端收到回复后,发送确认ACK=1,ack=w+1,自己的seq=u+1,客户端进入TIME-WAIT(时间等待)。客户端经过2个最长报文段寿命后,客户端CLOSE;服务器收到确认后,立刻进入CLOSE状态。

 常见面试题

【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。在Client发送出最后的ACK回复,但该ACK可能丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client不能立即关闭,它必须确认Server接收到了该ACK。Client会在发送出ACK之后进入到TIME_WAIT状态。Client会设置一个计时器,等待2MSL的时间。如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL是两倍的MSL(Maximum Segment Lifetime)。MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果直到2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

【问题3】为什么不能用两次握手进行连接?

答:3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

       现在把三次握手改成仅需要两次握手,死锁是可能发生的。作为例子,考虑计算机S和C之间的通信,假定C给S发送一个连接请求分组,S收到了这个分组,并发 送了确认应答分组。按照两次握手的协定,S认为连接已经成功地建立了,可以开始发送数据分组。可是,C在S的应答分组在传输中被丢失的情况下,将不知道S 是否已准备好,不知道S建立什么样的序列号,C甚至怀疑S是否收到自己的连接请求分组。在这种情况下,C认为连接还未建立成功,将忽略S发来的任何数据分 组,只等待连接确认应答分组。而S在发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

【问题4】如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

问题5】TCP相比UDP为什么是可靠的?

[1] 确认和重传机制

建立连接时三次握手同步双方的“序列号 + 确认号 + 窗口大小信息”,是确认重传、流控的基础传输过程中,如果Checksum校验失败、丢包或延时,发送端重传。

[2] 数据排序:TCP有专门的序列号SN字段,可提供数据re-order

[3] 流量控制:窗口和计时器的使用。TCP窗口中会指明双方能够发送接收的最大数据量

[4] 拥塞控制:

TCP的拥塞控制由4个核心算法组成。

“慢启动”(Slow Start)

“拥塞避免”(Congestion avoidance)

“快速重传 ”(Fast Retransmit)

“快速恢复”(Fast Recovery)

以上就是TCP比UDP传输更可靠的原因。

3.UDP协议

1). UDP 是无连接的,即发送数据之前不需要建立连接,因此减少了开销和发送数据之前的时延。

2). UDP 使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的连接状态表。

3). UDP 是面向报文的。发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付IP层。UDP对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。因此,应用程序必须选择合适大小的报文。

4). UDP 没有拥塞控制,因此网络出现的拥塞不会使源主机的发送速率降低。很多的实时应用(如IP电话、实时视频会议等)要去源主机以恒定的速率发送数据,并且允许在网络发生拥塞时丢失一些数据,但却不允许数据有太多的时延。UDP正好符合这种要求。

5). UDP 支持一对一、一对多、多对一和多对多的交互通信

6). UDP 的首部开销小,只有8个字节,比TCP的20个字节的首部要短。

 

你可能感兴趣的:(C++)