并发编程重要吗?当然重要,因为并发在我们的项目中真实存在,如果你不能充分了解它那么很可能造成严重的生产事故。最近隔壁项目组出了一个问题,每次请求接口之后都发现线程固定增加了5个,而且线程数一直增加没有减少,他们怀疑是中间件的问题,但实际上是因为他们的代码中线程池使用不当造成。所以了解并发是很有必要的。
线程的创建到底有几种?这个答案其实不是固定。要看回答的方向
There are two ways to create a new thread of execution
eg1:new Thread().start()
eg2:R implements Runnable
上面这句话是Thread类上面的注释,也就是官方说是两种,但是实际使用过程中根据根据这两种又有衍生和变化。概括有一下几种
1. new Thread().start();
2. R implements Runnable
new Thread(R).start();
3. C implements Callable
new Thread(new FutureTask<>(C)).start();
4. R implements Runnable
new ThreadPoolExecutor().execute(R);
1. Thread.interrupt() 给线程加一个中断标记
2. Thread.interrupted() 判断线程是否中断,会清除标记
3. Thread.isInterrupted() 判断线程是否中断,不会清除标记
1. synchronized 的 wait(),notify()
2. locksupport 的 park(),unpark()
3. condition wait() signal()
下面这段代码大概就是我们使用ThreadLocal的方式,接下来将根据这段代码中的方法对ThreadLocal原理进行剖析。
// 1.new
ThreadLocal<Map<String,String>> myThreadLocal = new ThreadLocal<>();
// 2.存值
Map<String,String> map = new HashMap<>();
map.put("org","0001");
myThreadLocal.set(map);
// 3.获取值
map = myThreadLocal.get();
String org = map.get("org");
System.out.println(org);
// 4.清空
myThreadLocal.remove();
public ThreadLocal() {
}
public void set(T value) {
// 获取当前线程
Thread t = Thread.currentThread();
// 获取thread对应的map
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
// 创建map
createMap(t, value);
}
void createMap(Thread t, T firstValue) {
// 给thread的threadLocals属性赋值
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
// 创建初始长度为16的数组
table = new Entry[INITIAL_CAPACITY];
// firstKey传的是this 即myThreadLocal对象本身
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
// 数组中存入值:key=myThreadLocal,firstValue=map
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
ThreadLocalMap getMap(Thread t) {
// 获取thread中的ThreadLocalMap属性
return t.threadLocals;
}
执行完myThreadLocal.set(map),最终结构如下图:
public T get() {
Thread t = Thread.currentThread();
// 获取thread的属性ThreadLocalMap
ThreadLocalMap map = getMap(t);
if (map != null) {
// 获取key为myThreadLocal的Entry
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
// 返回value即为set存储的map
return result;
}
}
// 如果当前线程未set值,默认返回null
return setInitialValue();
}
private Entry getEntry(ThreadLocal<?> key) {
// 和set时一样,使用myThreadLocal对象获取数组的下标
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
// 当前下标位置数组值不为null,且key值相等。即为get返回值
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}
public void remove() {
// 获取当前程的属性ThreadLocalMap
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
// 移除当前myThreadLocal对象所在下标的数组的值
m.remove(this);
}
private void remove(ThreadLocal<?> key) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
// 获取对象下标的数组值
for (Entry e = tab[i];e != null;e = tab[i = nextIndex(i, len)]) {
if (e.get() == key) {
e.clear();
expungeStaleEntry(i);
return;
}
}
}
下面的源码实现主要列的是非公平锁,公平锁代码和非公平锁差不多所以鼓励大家自己看看。看源码前请大家想象一个场景,现在有两个线程,第一个线程获取锁成功了在执行业务逻辑时,此时第二个线程过来加锁。下面的源码分析的就是上面这样一个场景。
常规使用如下:
// 1.创建 ReentrantLock 对象
ReentrantLock lock = new ReentrantLock();
// 2.获取锁
lock.lock();
try {
// 业务逻辑
} finally {
// 3.释放锁
lock.unlock();
}
public ReentrantLock() {
// 给ReentrantLock属性赋值;NonfairSync实际上就是抽象的队列同步器
sync = new NonfairSync();
}
public void lock() {
sync.lock();
}
final void lock() {
// 使用CAS的方式尝试将同步等待队列中的state由0改为1
if (compareAndSetState(0, 1))
// 修改成功代表获取锁成功,将独占线程赋值为当前线程
setExclusiveOwnerThread(Thread.currentThread());
else
// 1.获取锁
acquire(1);
}
public final void acquire(int arg) {
// tryAcquire尝试获取一次锁,如果失败了addWaiter进入队列,然后再次获取锁acquireQueued
if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
protected final boolean tryAcquire(int acquires) {
// 非公平获取锁
return nonfairTryAcquire(acquires);
}
// acquires从2.1方法中传过来 固定为1
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
// 获取同步等待队列的state属性,默认值为0,如果不为0代表有线程获取锁成功
int c = getState();
if (c == 0) {
// 如果当前没有线程获取到锁,就直接cas加锁
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
// c!=0,当前已有线程获取了锁。判断是不是同一个线程
else if (current == getExclusiveOwnerThread()) {
// 可重入锁实现 通过state值自增判断重入几次
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
// node从4.2.1.1传递的是null
private Node addWaiter(Node mode) {
// 构建node节点
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
// 1.将尾节点赋值给变量pred
Node pred = tail;
// 2.判断尾节点是否为空,为空则代表链表为空未进行初始化(双向指针构造的)
if (pred != null) {
// 2.1 尾节点不为空,则将当前node节点添加到链表尾部
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 2.2 尾节点为空,则构建链表,并且插入
enq(node);
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
// 1.当尾节点为空,构造链表(new node()设置为头节点,并且尾节点和头节点指向同一个node)
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
// 2.尾节点不为空,将当前获取锁失败的线程所构建的node作为尾节点,并且修改双指针指向
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
我们假设thread1,先获取到了锁,那么thread2执行完上面的enq()方法,双向链表形状大概如下图所示
// node为获取锁失败的线程构建的node,arg为1
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
//1.获取node节点的前置节点
final Node p = node.predecessor();
//2 如果前置节点为头节点,则链表中实际只有一个线程在等待。再次尝试获取锁,如果获取到了锁,将当前node设置为head
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
//3 判断线程是否应该阻塞,修改node节点waitStatus==-1等待被唤醒,并且阻塞线程
if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
Node有一个volatile int waitStatus属性
默认=0;SIGNAL=-1;CANCELLED=1;CONDITION=-2;PROPAGATE=-3
// pred:当前线程构建节点的前置节点 node:当前线程构建的节点
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
// 第二次循环waitStatus==-1,因为4.2.1.1.3 有for (;;)所以会再次进入
if (ws == Node.SIGNAL)
return true;
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// 第一次循环waitStatus==0,默认走这里。通过cas将0修改为-1
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
执行完shouldParkAfterFailedAcquire方法后,链表状态大概如下图:
// 底层使用UNSAFE.park将线程阻塞在这里
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
public void unlock() {
sync.release(1);
}
public final boolean release(int arg) {
// 1.尝试释放锁
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
// 2.唤醒等待的后置节点
unparkSuccessor(h);
return true;
}
return false;
}
// releases==1
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
// 如果释放锁的线程不等于加锁线程抛异常
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
// 释放锁。即将独占线程置为null,恢复state=0
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
// 这里的node==head
private void unparkSuccessor(Node node) {
// ws==-1
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
// head节点的下一个节点即为thread2所在节点。唤醒阻塞中的thread2
if (s != null)
LockSupport.unpark(s.thread);
}
整个源码逻辑很多,下面梳理的代码,以最简单的情况为例。一个Producer线程向队列中添加元素,一个Consumer线程从队列中获取元素。有了这个前提再看下面的源码会更加容易一些。
常见使用方式如下:
......省略
ArrayBlockingQueue<Integer> abq = new ArrayBlockingQueue<>(16);
......省略
abq.put(new Random(100).nextInt());
......省略
abq.take();
// capacity初始容量
public ArrayBlockingQueue(int capacity) {
this(capacity, false);
}
// fair是否公平? 默认false
public ArrayBlockingQueue(int capacity, boolean fair) {
if (capacity <= 0)
throw new IllegalArgumentException();
// 创建指定长度的数组
this.items = new Object[capacity];
// 创建非公平锁
lock = new ReentrantLock(fair);
// 获取condition
notEmpty = lock.newCondition();
notFull = lock.newCondition();
}
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
// 加锁(可中断锁)
lock.lockInterruptibly();
try {
// count为数组中存的元素个数 相等则将producer线程await在这里
while (count == items.length)
notFull.await();
enqueue(e);
} finally {
lock.unlock();
}
}
private void enqueue(E x) {
final Object[] items = this.items;
// putIndex数组下标>>存数下标 默认putIndex==0
items[putIndex] = x;
// 循环数组实现。数组存满之后,下标恢复为0
if (++putIndex == items.length)
putIndex = 0;
// count记录数组中存的元素格式
count++;
// 队列中有元素之后,唤醒consumer线程进行消费
notEmpty.signal();
}
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 见 5.2.2.1
Node node = addConditionWaiter();
// 这里返回savedState==1
int savedState = fullyRelease(node);
int interruptMode = 0;
// isOnSyncQueue 返回fasle,所以while条件成立
while (!isOnSyncQueue(node)) {
// producer 线程在这里park阻塞
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
private Node addConditionWaiter() {
// lastWaiter默认为null
Node t = lastWaiter;
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
}
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
第一次执行完addConditionWaiter方法,Node大概是如下结构
final int fullyRelease(Node node) {
boolean failed = true;
try {
// 在5.2中先加锁了,所以这里默认返回savedState==1
int savedState = getState();
// 这里if条件成立 直接return 1
if (release(savedState)) {
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
// 前面的代码没有给head赋值 所以这里null==head,这里直接返回true
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
final boolean isOnSyncQueue(Node node) {
// node前面执行addConditionWaiter方法时,-2==waitStatus 。所以这里直接return fale
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
if (node.next != null) // If has successor, it must be on queue
return true;
return findNodeFromTail(node);
}
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
// 先加锁
lock.lockInterruptibly();
try {
// 当数组中元素数量=0时,让consumer线程await在这里
while (count == 0)
notEmpty.await();
// 队列中有元素时 获取数组元素
return dequeue();
} finally {
lock.unlock();
}
}
private E dequeue() {
final Object[] items = this.items;
// takeIndex为获取数组时的下标 默认从0开始
E x = (E) items[takeIndex];
items[takeIndex] = null;
// 当取到数组最后一个元素值重置下标
if (++takeIndex == items.length)
takeIndex = 0;
// 没消费一个元素 数组元素个数-1
count--;
if (itrs != null)
itrs.elementDequeued();
// 当队列中元素被消费后 唤醒producer线程进行put
notFull.signal();
return x;
}
源码分析的场景如下:第一个线程启动后调用await方法被阻塞,第二个线程调用countDown方法将state置为0,再唤醒第一个阻塞的线程
常见使用方法如下:
CountDownLatch countDownLatch = new CountDownLatch(1);
countDownLatch.await();
countDownLatch.countDown();
// 这里为了简单,我们示例中假设cont==1
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
// Sync extends AbstractQueuedSynchronizer (这一步相当于state=count)
this.sync = new Sync(count);
}
public void await() throws InterruptedException {
// 判断state!=0时阻塞线程
sync.acquireSharedInterruptibly(1);
}
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 判断state是否等于0 ,因为初始化时我们设置state==1,所以这 -1<0 if成立
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
private void doAcquireSharedInterruptibly(int arg)throws InterruptedException {
// addWaiter 在前面ReentrantLock中讲过。主要构建双向链表
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
// 这里又判断 state是否等于0 ,所以if条件不成立
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
// 最终线程会被park方法阻塞在这里。这个方法在ReentrantLock中讲过
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
public void countDown() {
// 执行state-1,当sate==0,唤醒阻塞的线程
sync.releaseShared(1);
}
public final boolean releaseShared(int arg) {
// if条件成立
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
protected boolean tryReleaseShared(int releases) {
for (;;) {
// 这里getState()==1
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
// 使用cas将state从1修改为0
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
private void doReleaseShared() {
for (;;) {
Node h = head;
// 根据前面构建的node的结构,接下来的两个if条件都是满足的
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue;
// 这里唤醒后面的阻塞线程
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
// 这里node是前面传进来的head
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
// s节点的线程就是我们自己被阻塞的线程
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
// 通过unpark唤醒我们前面通过park方法阻塞的线程
if (s != null)
LockSupport.unpark(s.thread);
}
ThreadPoolExecutor executor = new ThreadPoolExecutor(1,1,0, TimeUnit.SECONDS,new ArrayBlockingQueue<>(10));
executor.execute(new Runnable() {
@Override
public void run() {
System.out.println("run");
}
});
executor.shutdown();
executor.shutdownNow();
参数解释
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}