提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
二叉树解题的思维模式分两类: 1、是否可以通过遍历一遍二叉树得到答案?如果可以,用一个 traverse 函数配合外部变量来实现,这叫「遍历」的思维模式。 2、是否可以定义一个递归函数,通过子问题(子树)的答案推导出原问题的答案?如果可以,写出这个递归函数的定义,并充分利用这个函数的返回值,这叫「分解问题」的思维模式。 无论使用哪种思维模式,你都需要思考: 如果单独抽出一个二叉树节点,它需要做什么事情?需要在什么时候(前/中/后序位置)做?其他的节点不用你操心,递归函数会帮你在所有节点上执行相同的操作。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
return fun(nums, 0, nums.length-1);
}
public TreeNode fun(int[] nums, int low, int high){
if(low > high){
return null;
}
int index = low;
for(int i = low+1; i <= high; i ++){
if(nums[i] > nums[index]){
index = i;
}
}
TreeNode cur = new TreeNode(nums[index]);
TreeNode l = fun(nums,low,index-1);
TreeNode r = fun(nums,index+1,high);
cur.left = l;
cur.right = r;
return cur;
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
return fun(preorder, inorder, 0, preorder.length-1, 0, inorder.length-1);
}
public TreeNode fun(int[] preorder, int[] inorder, int preLeft,int preRight,int inPre,int inRight){
if(preLeft > preRight || inPre > inRight){
return null;
}
TreeNode root = new TreeNode(preorder[preLeft]);
int len = 0;
for(int i = inPre; i <= inRight; i ++){
if(inorder[i] == preorder[preLeft]){
len = i - inPre;
break;
}
}
root.left = fun(preorder, inorder, preLeft+1, preLeft+len, inPre, inPre+len-1);
root.right = fun(preorder, inorder, preLeft+len+1,preRight, inPre+len+1,inRight);
return root;
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
Map<Integer,Integer> invail;
public TreeNode buildTree(int[] inorder, int[] postorder) {
invail = new HashMap<>();
for(int i = 0; i < inorder.length; i ++){
invail.put(inorder[i],i);
}
return fun(inorder, postorder, 0, postorder.length-1,0,inorder.length-1);
}
public TreeNode fun(int[] inorder, int[] postorder, int postLeft, int postRight, int inLeft, int inRight){
if(postLeft > postRight || inLeft > inRight){
return null;
}
TreeNode root = new TreeNode(postorder[postRight]);
int index = invail.get(postorder[postRight]);
int len = index - inLeft;
root.left = fun(inorder, postorder, postLeft, postLeft+len-1,inLeft, index-1);
root.right = fun(inorder, postorder, postLeft+len,postRight-1,index+1,inRight);
return root;
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
Map<Integer,Integer> invail;
public TreeNode constructFromPrePost(int[] preorder, int[] postorder) {
invail = new HashMap<>();
for(int i = 0; i < postorder.length; i ++){
invail.put(postorder[i],i);
}
return fun(preorder,postorder,0,preorder.length-1,0,postorder.length-1);
}
public TreeNode fun(int[] preorder, int[] postorder, int preLeft, int preRight,int postLeft,int postRight){
if(preLeft > preRight || postLeft > postRight){
return null;
}
TreeNode cur = new TreeNode(preorder[preLeft]);
if(preLeft == preRight)return cur;
int index = invail.get(preorder[preLeft+1]);
int len = index - postLeft+1;
cur.left = fun(preorder, postorder, preLeft+1, preLeft+len, postLeft, index);
cur.right = fun(preorder, postorder, preLeft+len+1,preRight,index+1,postRight-1);
return cur;
}
}