多态的概念:通俗来讲,多态就是多种形态,具体来讲,就是去完成某个行为,当不同的对象去完成时会产生不同的状态。
举个例子:比如去车站买票的这个行为,当普通人买票时,是全价买票,而学生买票时,是半价买票,军人买票时,是优先买票。同样是买票,但是不同的用户买票,价位不同,这就是一种多态行为。
多态是在不同继承关系的类对象,去调用同一函数,产生不同的行为。
在继承中要构成多态还有两个条件:
虚函数:被virtual修饰的类成员函数称为虚函数
virtual void BuyTicket()
{
cout << "买票-全价" << endl;
}
虚函数的重写(覆盖):派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的返回值类型、函数名字、参数列表完成相同),称子类的虚函数重写了基类的虚函数。
举个例子:
class Person
{
public:
virtual void BuyTicket()
{
cout << "买票-全价" << endl;
}
};
class Student :public Person
{
public:
virtual void BuyTicket()
{
cout << "买票-半价" << endl;
}
};
void Func(Person& people)
{
people.BuyTicket();
}
void Test()
{
Person Mike;
Func(Mike);
Student Johnson;
Func(Johnson);
}
运行结果:
注意:在重写基类虚函数时,派生类的虚函数在不加virtual关键字时,虽然也可以构成重写(因为继承后基类的虚函数被继承下来了,在派生类中依旧保持虚函数的属性),但是这种写法不规范,不建议这样使用
如下所示:
void BuyTicket()
{
cout << "买票-半价" << endl;
}
class Person
{
public:
virtual Person* BuyTicket()
{
cout << "买票-全价" << endl;
return this;
}
};
class Student : public Person
{
public:
virtual Student* BuyTicket()
{
cout << "买票-半价" << endl;
return this;
}
};
void Func(Person* p)
{
p->BuyTicket();
delete p;
}
int main()
{
Func(new Person);
Func(new Student);
return 0;
}
class Person
{
public:
virtual ~Person()
{
cout << "~Person()" << endl;
}
};
class Student : public Person
{
public:
virtual ~Student()
{
cout << "~Student()" << endl;
}
};
int main()
{
Person* p1 = new Person;
Person* p2 = new Student;
delete p1;
delete p2;
return 0;
}
注意:只有派生类Student的析构函数重写了Person的析构函数,下面的delete对象调用析构函数,才能构成多态,才能保证p1和p2指向的对象正确的调用析构函数。
从上面可以看出,C++对函数重写的要求比较严格,但是有些情况下由于疏忽,可能会导致函数名字母次序写反,而无法构成重载,而这种错误在编译期间是不会报出的,只有在程序运行时没有得到预期结果才来debug,会得不偿失,因此,C++11提供了override 和 final两个关键字,可以帮助用户检测是否重写。
class Person {
public:
virtual void BuyTicket() final
{
cout << "买票-全价" << endl;
}
};
class Student : public Person {
public:
virtual void BuyTicket()
{
cout << "买票-半价" << endl;
}
};
class Person {
public:
virtual void BuyTicket()
{
cout << "买票-全价" << endl;
}
};
class Student : public Person {
public:
virtual void BuyTicket1() override
{
cout << "买票-半价" << endl;
}
};
在虚函数的后面写上 =0 ,则这个函数为纯虚函数。包含纯虚函数的类称为抽象类(也叫接口类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写纯虚函数,派生类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承。
举个例子:
class Person
{
public:
virtual void BuyTicket() = 0;
};
class Student1 : public Person {
public:
virtual void BuyTicket()
{
cout << "买票-全价" << endl;
}
};
class Student2 : public Person {
public:
virtual void BuyTicket()
{
cout << "买票-半价" << endl;
}
};
void Test()
{
Person* p1 = new Student1;
p1->BuyTicket();
Person* p2 = new Student2;
p2->BuyTicket();
}
普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。
我们先看看下面这到题:
class Base
{
public:
virtual void Func1()
{
cout << "Func1()" << endl;
}
private:
int _b = 1;
};
int main()
{
Base b;
cout << sizeof(Base) << endl;
return 0;
}
运行结果:
通过运行与观察监视窗口,我们发现b对象是8bytes,除了_b成员,还多了一个_vfptr放在对象的前面(注意有些平台可能会放到对象的最后面,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代表virtual,f代表function)。一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数的地址要被放到虚函数表中,虚函数表也简称虚表。
那么派生类中这个表又放了些什么呢?我们看看下面这个代码:
// 1.我们增加一个派生类Derive去继承Base
// 2.Derive中重写Func1
// 3.Base再增加一个虚函数Func2和一个普通函数Func3
class Base
{
public:
virtual void Func1()
{
cout << "Base::Func1()" << endl;
}
virtual void Func2()
{
cout << "Base::Func2()" << endl;
}
void Func3()
{
cout << "Base::Func3()" << endl;
}
private:
int _b = 1;
};
class Derive : public Base
{
public:
virtual void Func1()
{
cout << "Derive::Func1()" << endl;
}
private:
int _d = 2;
};
int main()
{
Base b;
Derive d;
return 0;
}
上面分析了什么是虚表,那么多态的原理到底是什么呢?我们看看下面这串代码:
class Person
{
public:
virtual void BuyTicket()
{
cout << "买票-全价" << endl;
}
};
class Student : public Person
{
public:
virtual void BuyTicket()
{
cout << "买票-半价" << endl;
}
};
void Func(Person* p)
{
p->BuyTicket();
}
int main()
{
Person Mike;
Func(&Mike);
Student Johnson;
Func(&Johnson);
return 0;
}
通过观察
我们先看看下面这串代码:
class Base
{
public:
virtual void func1()
{
cout << "Base::func1" << endl;
}
virtual void func2()
{
cout << "Base::func2" << endl;
}
private:
int a;
};
class Derive :public Base
{
public:
virtual void func1()
{
cout << "Derive::func1" << endl;
}
virtual void func3()
{
cout << "Derive::func3" << endl;
}
virtual void func4()
{
cout << "Derive::func4" << endl;
}
private:
int b;
};
int main()
{
Base b;
Derive d;
return 0;
}
通过观察监视窗口,我们可以发现看不见func3和func4。这里是编译器的监视窗口故意隐藏了这两个函数,也可以认为是他的一个小bug。
那么我们要如何查看d的虚表呢?下面我们使用代码打印出虚表中的函数:
class Base
{
public:
virtual void func1()
{
cout << "Base::func1" << endl;
}
virtual void func2()
{
cout << "Base::func2" << endl;
}
private:
int a;
};
class Derive :public Base
{
public:
virtual void func1()
{
cout << "Derive::func1" << endl;
}
virtual void func3()
{
cout << "Derive::func3" << endl;
}
virtual void func4()
{
cout << "Derive::func4" << endl;
}
private:
int d;
};
typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{
// 依次取虚表中的虚函数指针打印并调用。调用就可以看出存的是哪个函数
cout << "虚表地址 > " << vTable << endl;
for (int i = 0; vTable[i] != nullptr; ++i)
{
printf("第%d个虚函数地址 :%p -> ", i, vTable[i]);
VFPTR f = vTable[i];
f();
}
cout << endl;
}
int main()
{
Base b;
Derive d;
PrintVTable((VFPTR*)(*(int*)&b));
PrintVTable((VFPTR*)(*(int*)&d));
return 0;
}
思路:取出b、d对象的头4bytes,就是虚表的指针,前面我们说了虚函数表本质是一个存虚函数指针的指针数组,这个数组最后面放了一个nullptr
我们先看看下面这串代码:
class Base1
{
public:
virtual void func1()
{
cout << "Base1::func1" << endl;
}
virtual void func2()
{
cout << "Base1::func2" << endl;
}
private:
int b1;
};
class Base2
{
public:
virtual void func1()
{
cout << "Base2::func1" << endl;
}
virtual void func2()
{
cout << "Base2::func2" << endl;
}
private:
int b2;
int bb;
};
class Derive : public Base1, public Base2
{
public:
virtual void func1()
{
cout << "Derive::func1" << endl;
}
virtual void func3()
{
cout << "Derive::func3" << endl;
}
private:
int d1;
};
typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{
cout << "虚表地址>" << vTable << endl;
for (int i = 0; vTable[i] != nullptr; i++)
{
printf("第%d个虚函数地址 : %p -> ", i, vTable[i]);
VFPTR f = vTable[i];
f();
}
cout << endl;
}
int main()
{
Derive d;
VFPTR* vTableb1 = (VFPTR*)(*(int*)&d);
PrintVTable(vTableb1);
VFPTR* vTableb2 = (VFPTR*)(*(int*)((char*)&d + sizeof(Base1)));
PrintVTable(vTableb2);
return 0;
}