《算法通关村——位移的妙用》

《算法通关村——位移的妙用》

今天我们练习位移的妙用

直接用几个题目增强理解

191. 位1的个数

编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。

提示:

  • 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
  • 在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在 示例 3 中,输入表示有符号整数 -3

示例 1:

输入:n = 00000000000000000000000000001011
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。

示例 2:

输入:n = 00000000000000000000000010000000
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 '1'。

示例 3:

输入:n = 11111111111111111111111111111101
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 '1'。

提示:

  • 输入必须是长度为 32二进制串

题解

其实这里理解了这一题,那么后面的题目就都好理解了

这里有一个很重的特性就是,运算 n & (n-1) (关于这个式子的理解,大家可以一步一步按照运算顺序举个例子就可以理解啦)的时候运算的结果是n的二进制中的最后一个1会变成0,通过循环操作、计数这样也可以知道一个数中有多少个1。

public class Solution {
    // you need to treat n as an unsigned value
    public int hammingWeight(int n) {
        // int count = 0;
        // for(int i = 0 ; i < 32; i++){
        //     count += (n >> i) & 1;
        // }
        // return count;
        int count = 0;
        while(n != 0){
            n = n & (n-1);
            count ++;
        }
        return count;
    }
}

338. 比特位计数

给你一个整数 n ,对于 0 <= i <= n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n + 1 的数组 ans 作为答案。

示例 1:

输入:n = 2
输出:[0,1,1]
解释:
0 --> 0
1 --> 1
2 --> 10

示例 2:

输入:n = 5
输出:[0,1,1,2,1,2]
解释:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101

提示:

  • 0 <= n <= 105

进阶:

  • 很容易就能实现时间复杂度为 O(n log n) 的解决方案,你可以在线性时间复杂度 O(n) 内用一趟扫描解决此问题吗?
  • 你能不使用任何内置函数解决此问题吗?(如,C++ 中的 __builtin_popcount

题解

class Solution {
    public int[] countBits(int n) {
        int[] ans = new int[n+1];
        for(int i = 0 ;i <= n ;i++){
            int temp = i;
            int count = 0;
            while(temp != 0){
                temp = temp &(temp - 1);
                count++;
            }
            ans[i] = count;
        }
        return ans;
    }
}

190. 颠倒二进制位

颠倒给定的 32 位无符号整数的二进制位。

提示:

  • 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
  • 在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在 示例 2 中,输入表示有符号整数 -3,输出表示有符号整数 -1073741825

示例 1:

输入:n = 00000010100101000001111010011100
输出:964176192 (00111001011110000010100101000000)
解释:输入的二进制串 00000010100101000001111010011100 表示无符号整数 43261596,
     因此返回 964176192,其二进制表示形式为 00111001011110000010100101000000。

示例 2:

输入:n = 11111111111111111111111111111101
输出:3221225471 (10111111111111111111111111111111)
解释:输入的二进制串 11111111111111111111111111111101 表示无符号整数 4294967293,
     因此返回 3221225471 其二进制表示形式为 10111111111111111111111111111111 。

提示:

  • 输入是一个长度为 32 的二进制字符串

题解

public class Solution {
    // you need treat n as an unsigned value
    public int reverseBits(int n) {
        int result = 0;
        int power = 31;
        while(n != 0){
            result += (n & 1) << power;
            n = n >>> 1;
            power--;
        }
        return result;
    }
}

点击链接:我正在「编程导航」和朋友们讨论有趣的话题,你⼀起来吧?

也可以加我QQ(2837468248)咨询说明来意!

你可能感兴趣的:(算法学习,算法)