- Level2逐笔成交逐笔委托毫秒记录:今日分享优质股票数据20250122
2401_89140926
python金融数据库大数据
逐笔委托逐笔成交下载链接:https://pan.baidu.com/s/1WP6eGLip3gAbt7yFKg4XqA?pwd=7qtx提取码:7qtxLevel2逐笔成交逐笔委托数据分享下载通过Level2逐笔成交和逐笔委托这种每一笔的毫秒级别的数据可以分析出很多有用的点,包括主力意图,虚假动作,让任何操作无所遁形。适合交易大师来分析主力规律,也适合人工智能领域的机器学习,数据量大且精准。以下
- 大语言模型原理与工程实践:预训练数据构建
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:预训练数据构建1.背景介绍大语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到情感分析,再到机器翻译,几乎无所不能。这些模型的成功很大程度上依赖于预训练数据的质量和规模。预训练数据的构建不仅影响模型的性能,还决定了模型的泛化能力和应用范围。在本文中
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- 大语言模型原理与工程实践:案例介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:案例介绍作者:禅与计算机程序设计艺术近年来,随着深度学习技术的快速发展,大语言模型(LargeLanguageModel,LLM)在自然语言处理领域取得了突破性进展,展现出强大的文本生成、理解和推理能力。从智能对话到机器翻译,从代码生成到诗歌创作,LLM正在深刻地改变着我们与信息交互的方式,并为人工智能应用开拓了更广阔的空间。1.背景介绍1.1大语言模型的兴起大语言模型的
- Jetbrains Ai Assistant插件越来越好用了
Ai 编码
Ai编码工具人工智能android
在IntelliJIDEA中,JetBrainsAI是JetBrains集成的人工智能功能,旨在提高开发效率,辅助开发者更智能地编写、优化和理解代码。JetBrainsAI作为IntelliJIDEA的一部分,通过自然语言处理和机器学习技术,提供了许多智能代码建议和自动化功能。点击这里:获取JetbrainsAiAssistant插件 以下是JetBrainsAI在IntelliJIDEA中的一
- Java基础——数据类型(种类、包装类型、缓存机制、装拆箱、精度丢失)
Camel卡蒙
Java基础java缓存python
我是一个计算机专业研0的学生卡蒙Camel(刚保研)记录每天学习过程(主要学习Java、python、人工智能),总结知识点(内容来自:自我总结+网上借鉴)希望大家能一起发现问题和补充,也欢迎讨论文章目录Java数据类型数据类型种类包装类型和基本类型包装类型的缓存机制装箱与拆箱BigDecimal精度丢失问题使用BigDecimal解决Java数据类型数据类型种类Java有8大基本数据类型:类型关
- 算法——归并排序(基本思想、java实现、实现图解)
Camel卡蒙
数据结构与算法算法java排序算法
我是一个计算机专业研0的学生卡蒙Camel(刚保研)记录每天学习过程(主要学习Java、python、人工智能),总结知识点(内容来自:自我总结+网上借鉴)希望大家能一起发现问题和补充,也欢迎讨论文章目录归并排序介绍Java代码实现算法分析实现图解️和快速排序对比(面试)归并排序介绍归并排序(MergeSort)是一种基于分治法的排序算法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列
- 提升制造业效率的利器:基于Python的自动化质检系统
Echo_Wish
Python进阶python自动化开发语言
在现代制造业中,质量控制(QC)是确保产品符合客户要求和行业标准的重要环节。然而,传统的质检流程往往依赖人工检验,不仅耗时耗力,还容易受人为因素影响,导致错误率较高。在此背景下,自动化质检系统应运而生,借助人工智能(AI)和Python编程语言,实现高效、准确的质检过程。本文将探讨自动化质检系统的优势,并通过代码示例展示其实际应用。自动化质检系统的优势提高效率:自动化质检系统可以全天候不间断地工作
- 企业IT信息化架构与数字化转型建设方案
公众号:优享智库
数字化转型数据治理主数据数据仓库架构数据库
企业IT信息化架构与数字化转型建设方案企业IT信息化架构与数字化转型建设方案企业信息化现状与挑战现有信息化水平分析面临的主要问题与挑战数字化转型需求与迫切性IT信息化架构设计原则与目标设计原则及指导思想架构目标与战略定位关键技术选型及依据数字化转型战略规划与实施路径战略规划制定过程及内容实施路径选择与时间节点安排风险评估与应对措施基础设施建设与优化方案硬件设备选型及配置方案软件系统部署及集成策略网
- AI驱动电商搜索导购:技术创新与应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
文章标题《AI驱动电商搜索导购:技术创新与应用》关键词:人工智能,电商搜索导购,机器学习,深度学习,推荐系统,自然语言处理,个性化搜索,图像识别,应用案例,未来展望。摘要:本文旨在探讨人工智能(AI)在电商搜索导购领域的应用,分析其技术创新和实际应用案例,探讨AI驱动电商搜索导购的未来发展趋势。文章首先介绍了AI在电商搜索导购中的角色和优势,然后深入探讨了AI基础理论和搜索导购技术原理。接着,文章
- LLM大模型部署实战指南:部署简化流程
汀、人工智能
AIAgentLLM工业级落地实践人工智能
LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发1.Ollama部署的本地模型()Ollama是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。,这是Ollama的官网地址:https://ollama.com/以下是其主要特点和功能概述:简化部署:Ollama目标在于简化在Docker容器中部署大型语言
- 3D高斯泼溅原理及实践【3DGS】
新缸中之脑
3d
人工智能可能是我们这个时代的主要领域之一,它几乎可以用于从驾驶汽车到医疗保健甚至能够预防失明等所有领域,最近提出了一种新的3D重建方法。SNGULAR及其人工智能团队希望了解有关3D重建技术的最新更新的更多信息。目前可用于3D重建的许多SOTA方法需要大量CPU/GPU使用率来处理场景或渲染场景,其中一些甚至需要两者兼而有之。SIGGRAPH2023GaussianSplatting上提出的新方法
- WebRover :一个功能强大的 Python 库,用于从 Web 内容生成高质量的数据集。
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- Azure AI-102 认证全攻略: (二十二) AI的隐私与安全
海棠AI实验室
AI-102认证考试全攻略azure人工智能安全microsoftAI-102
引言:AI隐私与安全的重要性随着人工智能技术的飞速发展,数据隐私和安全问题已成为一个亟需解决的挑战。AI系统往往需要处理大量的敏感数据,这些数据的泄露或滥用不仅会对个人隐私产生严重影响,还可能对企业的声誉和信任度造成灾难性的损害。因此,在AI领域中,隐私与安全的保护已经成为设计和实施AI解决方案时必须严格遵守的基本原则。随着全球隐私保护法规的日益完善,如欧洲的《通用数据保护条例》(GDPR)和加利
- 【机器学习实战入门】使用OpenCV进行性别和年龄检测
精通代码大仙
数据挖掘深度学习python机器学习pythonopencv数据挖掘人工智能
GenderandAgeDetectionPython项目首先,向您介绍用于此高级Python项目的性别和年龄检测中的术语:什么是计算机视觉?计算机视觉是一门让计算机能够像人类一样观察和识别数字图像和视频的学科。它面临的挑战大多源于对生物视觉有限的了解。计算机视觉涉及获取、处理、分析和理解数字图像,旨在从现实世界中提取高维数据,从而生成可用来做决策的符号或数值信息。该过程通常包括物体识别、视频跟踪
- 探索LangChain中OpenAI模型的token级log probabilities
jkgSFS
langchaineasyui前端python
在AI模型的开发和调试中,了解每个生成token的概率是非常有用的。这些信息可以帮我们理解模型的决策过程,识别可能的错误。本篇文章将介绍如何通过LangChain与OpenAI整合来获取这些token级的logprobabilities。技术背景介绍什么是LogProbabilities?在自然语言处理中,logprobabilities是一种对token生成概率的度量。通常,这个值越高,表示生成
- 使用VolcEngine Maas Chat进行语言模型对话的入门指南
dagGAIYD
语言模型人工智能自然语言处理python
技术背景介绍VolcEngineMaasChat模型提供了一种便捷的方式进行对话接口的设计与实现,特别是对于自然语言处理(NLP)应用。通过简单的API调用,开发者可以轻松集成强大的AI对话能力到他们的应用中。本文将指导您如何使用VolcEngineMaasChat进行对话交互。核心原理解析VolcEngineMaasChat利用大语言模型来处理和生成自然语言,在接收到用户的输入后,模型会通过分析
- 使用iFlyTek SparkLLM进行实时聊天应用开发
dagGAIYD
前端javascriptjavapython
技术背景介绍在当今的AI应用开发中,实时对话模型越来越受到重视。iFlyTek的SparkLLM为开发者提供了强大的聊天模型API,支持灵活的集成和扩展。本文将介绍如何使用SparkLLM搭建一个简单的聊天应用,包括基本的API初始化和调用,以及如何实现流式输出。核心原理解析SparkLLM是一款基于大规模语言模型的对话生成系统。它的核心在于通过自然语言理解和生成,实现人机之间的自然交流。通过使用
- 如何使用 LangChain 实现模型功能调用
dagGAIYD
langchainpython
在本文中,我们将探索如何使用LangChain框架实现语言模型(LLM)的功能调用。这是构建智能对话系统、工具调用代理等应用的核心能力。通过本文,你将能够理解模型功能调用的原理,并学习如何在代码中实现这一功能。技术背景介绍功能调用是近年来语言模型(特别是ChatGPT等对话模型)的一个重要特性。它允许开发者定义特定的工具或功能,并让模型根据上下文自动决定是否调用这些功能,以及如何调用。LangCh
- 使用ModelScope实现高效句嵌入生成
dagGAIYD
python
技术背景介绍在自然语言处理(NLP)任务中,向量化文本(嵌入)是许多下游任务(如语义搜索、文本分类、问答系统等)的核心步骤之一。通过将文本转换为密集向量表示,我们可以在高维向量空间中构建更加高效的表示和检索算法。ModelScope是阿里云开源的一个模型和数据集管理平台,提供了大量预训练模型,涵盖了各种领域和任务。ModelScopeEmbeddings是一个与LangChain社区集成的工具类,
- 解读 77页2024 集团企业IT技术架构规划方案
智慧化智能化数字化方案
方案解读馆架构
概述了集团企业2024年度IT技术架构规划方案的首课,旨在通过TOGAF企业架构框架方法论,系统规划并优化技术架构。项目核心目标在于结合集团信息化建设愿景与当前技术架构现状,制定前瞻性、标准化的技术架构规划及发展策略,以支撑集团业务的长远发展。规划内容涵盖技术架构设计原则、方法及参考,确保方案的科学性与可行性。技术架构设计将聚焦于产品研发、市场营销、战略经营等关键业务领域,通过明确技术架构的设计目
- 论面向服务的架构与其应用
zju3080103798
软考bigdata人工智能运维
论面向服务的架构与其应用摘要:2020年4月,本人所在的某市金融投资集团启动了集团综合管理系统建设,该项目实现基金、融资租赁、资金管理、转贷、融资担保、保理等金融业务信息化及人力资源、智能办公、法务管理等内部管理功能,在此项目中,我担任了架构师,负责项目总体架构设计工作。本文以该综合管理系统为例,主要论述了面向服务的架构在该系统中的应用。提供数据联邦、数据复制转换、工作流集成等控制服务实现新老系统
- 【软考高级架构设计师】论面向服务架构(SOA)设计及其应用
是l峰ye
架构系统架构
2021年6月,在我任职的公司期间,我参与了某军方哨兵站点项目的建设,并担任其软件架构师一职,负责系统的架构设计工作。该系统主要由安全监控、预警上报、异常处理和调度中心等多个服务组成,能实时监控周边环境,并提供监控、警示、报警和通讯等功能。本文将结合作者时间,以哨兵站点系统为例,论述面向服务的架构的应用。首先介绍面向服务(SOA)架构设计和实现,并详细阐述每种技术和标准的具体内容,之后结合项目实践
- 从ErnieBotChat迁移到QianfanChatEndpoint的实践指南
fGVBSAbe
python
技术背景介绍ErnieBot是由百度开发的大型语言模型,拥有强大的中文数据处理能力。然而,由于ErnieBotChat在功能和维护上的不足,官方建议开发者切换到功能更强大的QianfanChatEndpoint。QianfanChatEndpoint在流式传输、函数调用能力等方面提供了更为先进的支持。核心原理解析QianfanChatEndpoint是百度Qianfan平台的一部分,提供了更为灵活
- 人工智能学习(一)之python入门
power-辰南
大模型算法实战工程python数据库前端
一、引言在当今的软件开发领域,面向对象编程(Object-OrientedProgramming,OOP)已经成为一种主流的编程范式。Python作为一门功能强大且简洁易读的编程语言,对面向对象编程提供了非常完善的支持。无论是开发大型项目、构建数据科学应用,还是进行自动化脚本编写,理解和掌握Python面向对象编程都能让你更高效地完成任务。本文将带你快速入门Python面向对象编程,通过清晰的概念
- Transformer架构原理详解:多头注意力(MultiHead Attention)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,多头注意力,Multi-HeadAttention,机器翻译,自然语言处理,深度学习1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展。传统的循环神经网络(RNN)在处理长序列数据时存在效率低下和梯度消失等问题。为了解决这些问题,谷歌于2017年提出了Transformer架构,并将其应用于机器翻译任务,取得了突破性的成果。Transformer的核心创
- AI 对程序员的冲击剖析
程序员WANG
工具人工智能机器学习语言模型
摘要随着人工智能(AI)技术的飞速发展,其影响力已逐渐渗透到各个行业,程序员群体也面临着前所未有的冲击。本文深入探讨AI对程序员在编程工作模式、技能需求以及职业发展路径等方面带来的冲击,并分析程序员应对这些冲击的策略与方向,旨在为程序员在AI时代的职业发展提供参考。一、引言AI技术近年来取得了突破性进展,其在自然语言处理、机器学习、深度学习等领域的应用日益广泛。在软件开发领域,AI不再仅仅是辅助工
- AI 在生活中的渗透与技术解析
程序员WANG
工具深度学习机器学习语音识别自然语言处理语言模型
引言在当今数字化时代,人工智能(AI)已不再是科幻小说中的概念,而是实实在在地渗透到人们生活的方方面面。从清晨醒来使用的智能语音助手,到夜晚入睡时智能家居设备营造的舒适环境,AI技术正悄然改变着我们的生活方式、工作模式以及社会互动。本文旨在深入探讨AI在生活中的具体应用场景,并解析支撑这些应用的关键技术。AI在日常生活中的应用场景智能语音助手智能语音助手如Siri、小爱同学和小度等,已成为许多人日
- WebRover: 专为训练大型语言模型和 AI 应用程序而设计的 Python 库
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- 人类大脑与大规模神经网络的对比及未来展望
东方佑
量子变法神经网络人工智能深度学习
引言随着人工智能(AI)技术的迅猛发展,研究人员不断尝试构建更加复杂和强大的模型,以期实现与人类大脑相媲美的智能水平。本文将探讨当前大规模神经网络(LLM,LargeLanguageModels)的发展现状,并基于现有数据对未来进行预测。特别地,我们将分析达到人类大脑突触连接规模所需的时间框架、可能面临的挑战以及使用转义词表技术所带来的优势。人类大脑的基本结构人类大脑是一个极其复杂的系统,包含大约
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不