MySQL45讲(第22-25讲)

目录

MySQL有哪些“饮鸩止渴”提高性能的方法

短连接风暴

慢查询性能问题

QPS突增问题

MySQL是怎么保证数据不丢的(redo log && binlog)

binlog的写入机制

redo log的写入机制

MySQL是怎么保证主备一致的

MySQL主备的基本原理

binlog的三种格式对比(statement,row,mixed)

为什么会有mixed格式的binlog?

循环复制问题

MySQL是怎么保证高可用的

主备延迟

主备延迟的来源

可靠性优先策略

可用性优先策略


MySQL有哪些“饮鸩止渴”提高性能的方法

短连接风暴

正常的短连接模式就是连接到数据库后,执行很少的SQL语句就断开,下次需要的时候再重连。如果使用的是短连接,在业务高峰期的时候,就可能出现连接数突然暴涨的情况。

MySQL建立连接的过程,成本是很高的。除了正常的网络连接三次握手外,还需要做登录权限判断和获得这个连接的数据读写权限。

短连接模型存在一个风险,就是一旦数据库处理得慢一些,连接数就会暴涨。max_connections参数,用来控制一个MySQL实例同时存在的连接数的上限,超过这个值,系统就会拒绝接下来的连接请求,并报错提示“Too many connections”。对于被拒绝连接的请求来说,从业务角度看就是数据库不可用。

在机器负载比较高的时候,处理现有请求的时间变长,每个连接保持的时间也更长。这时,再有新建连接的话,就可能会超过max_connections的限制。

调高max_connections的值。但这样做是有风险的。因为设计max_connections这个参数的目的是想保护MySQL,如果我们把它改得太大,让更多的连接都可以进来,那么系统的负载可能会进一步加大,大量的资源耗费在权限验证等逻辑上,结果可能是适得其反,已经连接的线程拿不到CPU资源去执行业务的SQL请求。

第一种方法:先处理掉那些占着连接但是不工作的线程。

max_connections的计算,不是看谁在running,是只要连着就占用一个计数位置。对于那些不需要保持的连接,我们可以通过kill connection主动踢掉。这个行为跟事先设置wait_timeout的效果是一样的。设置wait_timeout参数表示的是,一个线程空闲wait_timeout这么多秒之后,就会被MySQL直接断开连接。

在show processlist的结果里,踢掉显示为sleep的线程,可能是有损的。

MySQL45讲(第22-25讲)_第1张图片 事务内空闲(A)和事务外空闲(B)

如果断开session A的连接,因为这时候session A还没有提交,所以MySQL只能按照回滚事务来处理;而断开session B的连接,就没什么大影响。所以,如果按照优先级来说,你应该优先断开像session B这样的事务外空闲的连接。

怎么判断哪些是事务外空闲的呢?

session C在T时刻之后的30秒执行show processlist,看到的结果是这样的。 

图中id=4和id=5的两个会话都是Sleep 状态。而要看事务具体状态的话,你可以查information_schema库的innodb_trx表。

MySQL45讲(第22-25讲)_第2张图片

这个结果里,trx_mysql_thread_id=4,表示id=4的线程还处在事务中。

因此,如果是连接数过多,你可以优先断开事务外空闲太久的连接;如果这样还不够,再考虑断开事务内空闲太久的连接。

从服务端断开连接使用的是kill connection + id的命令, 一个客户端处于sleep状态时,它的连接被服务端主动断开后,这个客户端并不会马上知道。直到客户端在发起下一个请求的时候,才会收到这样的报错“ERROR 2013 (HY000): Lost connection to MySQL server during query”。

从数据库端主动断开连接可能是有损的,尤其是有的应用端收到这个错误后,不重新连接,而是直接用这个已经不能用的句柄重试查询。这会导致从应用端看上去,“MySQL一直没恢复”。

第二种方法:减少连接过程的消耗。

有的业务代码会在短时间内先大量申请数据库连接做备用,如果现在数据库确认是被连接行为打挂了,那么一种可能的做法,是让数据库跳过权限验证阶段。

跳过权限验证的方法是:重启数据库,并使用–skip-grant-tables参数启动。这样,整个MySQL会跳过所有的权限验证阶段,包括连接过程和语句执行过程在内。

在MySQL 8.0版本里,如果你启用–skip-grant-tables参数,MySQL会默认把 --skip-networking参数打开,表示这时候数据库只能被本地的客户端连接。可见,MySQL官方对skip-grant-tables这个参数的安全问题也很重视。

慢查询性能问题

导致慢查询的第一种可能是,索引没有设计好。

种场景一般就是通过紧急创建索引来解决。MySQL 5.6版本以后,创建索引都支持Online DDL了,对于那种高峰期数据库已经被这个语句打挂了的情况,最高效的做法就是直接执行alter table 语句。

比较理想的是能够在备库先执行。假设你现在的服务是一主一备,主库A、备库B,这个方案的大致流程是这样的:

  1. 在备库B上执行 set sql_log_bin=off,也就是不写binlog,然后执行alter table 语句加上索引;

  2. 执行主备切换;

  3. 这时候主库是B,备库是A。在A上执行 set sql_log_bin=off,然后执行alter table 语句加上索引。

这是一个“古老”的DDL方案。平时在做变更的时候,你应该考虑类似gh-ost这样的方案,更加稳妥。但是在需要紧急处理时,上面这个方案的效率是最高的。

导致慢查询的第二种可能是,语句没写好。

可以通过改写SQL语句来处理。MySQL 5.7提供了query_rewrite功能,可以把输入的一种语句改写成另外一种模式。

比如,语句被错误地写成了 select * from t where id + 1 = 10000,你可以通过下面的方式,增加一个语句改写规则。

mysql> insert into query_rewrite.rewrite_rules(pattern, replacement, pattern_database) values ("select * from t where id + 1 = ?", "select * from t where id = ? - 1", "db1");

call query_rewrite.flush_rewrite_rules();

这里,call query_rewrite.flush_rewrite_rules()这个存储过程,是让插入的新规则生效,也就是我们说的“查询重写”。

MySQL45讲(第22-25讲)_第3张图片

导致慢查询的第三种可能,MySQL选错了索引。

应急方案就是给这个语句加上force index。

同样地,使用查询重写功能,给原来的语句加上force index,也可以解决这个问题。

通过下面这个过程,我们就可以预先发现问题。

  1. 上线前,在测试环境,把慢查询日志(slow log)打开,并且把long_query_time设置成0,确保每个语句都会被记录入慢查询日志;

  2. 在测试表里插入模拟线上的数据,做一遍回归测试;

  3. 观察慢查询日志里每类语句的输出,特别留意Rows_examined字段是否与预期一致。

使用开源工具pt-query-digest(pt-query-digest — Percona Toolkit Documentation)。检查所有的SQL语句的返回结果。

QPS突增问题

有时候由于业务突然出现高峰,或者应用程序bug,导致某个语句的QPS突然暴涨,也可能导致MySQL压力过大,影响服务。

之前碰到过一类情况,是由一个新功能的bug导致的。当然,最理想的情况是让业务把这个功能下掉,服务自然就会恢复。

而下掉一个功能,如果从数据库端处理的话,对应于不同的背景,有不同的方法可用。我这里再和你展开说明一下。

  1. 一种是由全新业务的bug导致的。假设你的DB运维是比较规范的,也就是说白名单是一个个加的。这种情况下,如果你能够确定业务方会下掉这个功能,只是时间上没那么快,那么就可以从数据库端直接把白名单去掉。

  2. 如果这个新功能使用的是单独的数据库用户,可以用管理员账号把这个用户删掉,然后断开现有连接。这样,这个新功能的连接不成功,由它引发的QPS就会变成0。

  3. 如果这个新增的功能跟主体功能是部署在一起的,那么我们只能通过处理语句来限制。这时,我们可以使用上面提到的查询重写功能,把压力最大的SQL语句直接重写成"select 1"返回。

当然,这个操作的风险很高,需要你特别细致。它可能存在两个副作用:

  1. 如果别的功能里面也用到了这个SQL语句模板,会有误伤;

  2. 很多业务并不是靠这一个语句就能完成逻辑的,所以如果单独把这一个语句以select 1的结果返回的话,可能会导致后面的业务逻辑一起失败。

所以,方案3是用于止血的,跟前面提到的去掉权限验证一样,应该是你所有选项里优先级最低的一个方案。

方案1和2都要依赖于规范的运维体系:虚拟化、白名单机制、业务账号分离。


MySQL是怎么保证数据不丢的(redo log && binlog)

binlog的写入机制

其实,binlog的写入逻辑比较简单:事务执行过程中,先把日志写到binlog cache(线程私有),事务提交的时候,再把binlog cache写到binlog文件中。

一个事务的binlog是不能被拆开的,因此不论这个事务多大,也要确保一次性写入。这就涉及到了binlog cache的保存问题。

系统给binlog cache分配了一片内存,每个线程一个,参数 binlog_cache_size用于控制单个线程内binlog cache所占内存的大小。如果超过了这个参数规定的大小,就要暂存到磁盘。

事务提交的时候,执行器把binlog cache里的完整事务写入到binlog中,并清空binlog cache。

MySQL45讲(第22-25讲)_第4张图片

可以看到,每个线程有自己binlog cache,但是共用同一份binlog文件。

  • 图中的write,指的就是指把日志写入到文件系统的page cache,并没有把数据持久化到磁盘,所以速度比较快。
  • 图中的fsync,才是将数据持久化到磁盘的操作。一般情况下,我们认为fsync才占磁盘的IOPS。

write 和fsync的时机,是由参数sync_binlog控制的:

  1. sync_binlog=0的时候,表示每次提交事务都只write,不fsync;

  2. sync_binlog=1的时候,表示每次提交事务都会执行fsync;

  3. sync_binlog=N(N>1)的时候,表示每次提交事务都write,但累积N个事务后才fsync。

因此,在出现IO瓶颈的场景里,将sync_binlog设置成一个比较大的值,可以提升性能。在实际的业务场景中,考虑到丢失日志量的可控性,一般不建议将这个参数设成0,比较常见的是将其设置为100~1000中的某个数值。

但是,将sync_binlog设置为N,对应的风险是:如果主机发生异常重启,会丢失最近N个事务的binlog日志。

redo log的写入机制

事务在执行过程中,生成的redo log是要先写到redo log buffer的。

redo log buffer里面的内容,是不是每次生成后都要直接持久化到磁盘呢?

答案是,不需要。

如果事务执行期间MySQL发生异常重启,那这部分日志就丢了。由于事务并没有提交,所以这时日志丢了也不会有损失。

事务还没提交的时候,redo log buffer中的部分日志有没有可能被持久化到磁盘呢?

答案是,确实会有。

这个问题,要从redo log可能存在的三种状态说起。这三种状态,对应的就是图2 中的三个颜色块。

MySQL45讲(第22-25讲)_第5张图片

这三种状态分别是:

  1. 存在redo log buffer中,物理上是在MySQL进程内存中,就是图中的红色部分;

  2. 写到磁盘(write),但是没有持久化(fsync),物理上是在文件系统的page cache里面,也就是图中的黄色部分;

  3. 持久化到磁盘,对应的是hard disk,也就是图中的绿色部分。

日志写到redo log buffer是很快的,wirte到page cache也差不多,但是持久化到磁盘的速度就慢多了。

为了控制redo log的写入策略,InnoDB提供了innodb_flush_log_at_trx_commit参数,它有三种可能取值:

  1. 设置为0的时候,表示每次事务提交时都只是把redo log留在redo log buffer中;

  2. 设置为1的时候,表示每次事务提交时都将redo log直接持久化到磁盘;

  3. 设置为2的时候,表示每次事务提交时都只是把redo log写到page cache。

InnoDB有一个后台线程,每隔1秒,就会把redo log buffer中的日志,调用write写到文件系统的page cache,然后调用fsync持久化到磁盘。

注意,事务执行中间过程的redo log也是直接写在redo log buffer中的,这些redo log也会被后台线程一起持久化到磁盘。也就是说,一个没有提交的事务的redo log,也是可能已经持久化到磁盘的。

实际上,除了后台线程每秒一次的轮询操作外,还有两种场景会让一个没有提交的事务的redo log写入到磁盘中。

  1. 一种是,redo log buffer占用的空间即将达到 innodb_log_buffer_size一半的时候,后台线程会主动写盘。注意,由于这个事务并没有提交,所以这个写盘动作只是write,而没有调用fsync,也就是只留在了文件系统的page cache。

  2. 另一种是,并行的事务提交的时候,顺带将这个事务的redo log buffer持久化到磁盘。假设一个事务A执行到一半,已经写了一些redo log到buffer中,这时候有另外一个线程的事务B提交,如果innodb_flush_log_at_trx_commit设置的是1,那么按照这个参数的逻辑,事务B要把redo log buffer里的日志全部持久化到磁盘。这时候,就会带上事务A在redo log buffer里的日志一起持久化到磁盘。

这里需要说明的是,我们介绍两阶段提交的时候说过,时序上redo log先prepare, 再写binlog,最后再把redo log commit。

如果把innodb_flush_log_at_trx_commit设置成1,那么redo log在prepare阶段就要持久化一次,因为有一个崩溃恢复逻辑是要依赖于prepare 的redo log,再加上binlog来恢复的。

每秒一次后台轮询刷盘,再加上崩溃恢复这个逻辑,InnoDB就认为redo log在commit的时候就不需要fsync了,只会write到文件系统的page cache中就够了。

通常我们说MySQL的“双1”配置,指的就是sync_binlog和innodb_flush_log_at_trx_commit都设置成 1。也就是说,一个事务完整提交前,需要等待两次刷盘,一次是redo log(prepare 阶段),一次是binlog。

这时候,你可能有一个疑问,这意味着我从MySQL看到的TPS是每秒两万的话,每秒就会写四万次磁盘。但是,我用工具测试出来,磁盘能力也就两万左右,怎么能实现两万的TPS?

组提交(group commit)机制

日志逻辑序列号(log sequence number,LSN):LSN是单调递增的,用来对应redo log的一个个写入点。每次写入长度为length的redo log, LSN的值就会加上length

LSN也会写到InnoDB的数据页中,来确保数据页不会被多次执行重复的redo log。

如图3所示,是三个并发事务(trx1, trx2, trx3)在prepare 阶段,都写完redo log buffer,持久化到磁盘的过程,对应的LSN分别是50、120 和160。

MySQL45讲(第22-25讲)_第6张图片

从图中可以看到,

  1. trx1是第一个到达的,会被选为这组的 leader;

  2. 等trx1要开始写盘的时候,这个组里面已经有了三个事务,这时候LSN也变成了160;

  3. trx1去写盘的时候,带的就是LSN=160,因此等trx1返回时,所有LSN小于等于160的redo log,都已经被持久化到磁盘;

  4. 这时候trx2和trx3就可以直接返回了。

所以,一次组提交里面,组员越多,节约磁盘IOPS的效果越好。但如果只有单线程压测,那就只能老老实实地一个事务对应一次持久化操作了。

在并发更新场景下,第一个事务写完redo log buffer以后,接下来这个fsync越晚调用,组员可能越多,节约IOPS的效果就越好。

为了让一次fsync带的组员更多,MySQL有一个很有趣的优化:拖时间。在介绍两阶段提交的时候,我曾经给你画了一个图,现在我把它截过来。

MySQL45讲(第22-25讲)_第7张图片

图中,我把“写binlog”当成一个动作。但实际上,写binlog是分成两步的:

  1. 先把binlog从binlog cache中写到磁盘上的binlog文件;

  2. 调用fsync持久化。

MySQL为了让组提交的效果更好,把redo log做fsync的时间拖到了步骤1之后。也就是说,上面的图变成了这样:

MySQL45讲(第22-25讲)_第8张图片

这么一来,binlog也可以组提交了。在执行图5中第4步把binlog fsync到磁盘时,如果有多个事务的binlog已经写完了,也是一起持久化的,这样也可以减少IOPS的消耗。

不过通常情况下第3步执行得会很快,所以binlog的write和fsync间的间隔时间短,导致能集合到一起持久化的binlog比较少,因此binlog的组提交的效果通常不如redo log的效果那么好。

如果你想提升binlog组提交的效果,可以通过设置 binlog_group_commit_sync_delay 和 binlog_group_commit_sync_no_delay_count来实现。

  1. binlog_group_commit_sync_delay参数,表示延迟多少微秒后才调用fsync;

  2. binlog_group_commit_sync_no_delay_count参数,表示累积多少次以后才调用fsync。

这两个条件是的关系,也就是说只要有一个满足条件就会调用fsync。

所以,当binlog_group_commit_sync_delay设置为0的时候,binlog_group_commit_sync_no_delay_count也无效了。

之前有同学在评论区问到,WAL机制是减少磁盘写,可是每次提交事务都要写redo log和binlog,这磁盘读写次数也没变少呀?

现在你就能理解了,WAL机制主要得益于两个方面:

  1. redo log 和 binlog都是顺序写,磁盘的顺序写比随机写速度要快;

  2. 组提交机制,可以大幅度降低磁盘的IOPS消耗。

如果你的MySQL现在出现了性能瓶颈,而且瓶颈在IO上,可以通过哪些方法来提升性能呢?

针对这个问题,可以考虑以下三种方法:

  1. 设置 binlog_group_commit_sync_delay 和 binlog_group_commit_sync_no_delay_count参数,减少binlog的写盘次数。这个方法是基于“额外的故意等待”来实现的,因此可能会增加语句的响应时间,但没有丢失数据的风险。

  2. 将sync_binlog 设置为大于1的值(比较常见是100~1000)。这样做的风险是,主机掉电时会丢binlog日志。

  3. 将innodb_flush_log_at_trx_commit设置为2。这样做的风险是,主机掉电的时候会丢数据。

我不建议你把innodb_flush_log_at_trx_commit 设置成0。因为把这个参数设置成0,表示redo log只保存在内存中,这样的话MySQL本身异常重启也会丢数据,风险太大。而redo log写到文件系统的page cache的速度也是很快的,所以将这个参数设置成2跟设置成0其实性能差不多,但这样做MySQL异常重启时就不会丢数据了,相比之下风险会更小。


问题1:执行一个update语句以后,我再去执行hexdump命令直接查看ibd文件内容,为什么没有看到数据有改变呢?

回答:这可能是因为WAL机制的原因。update语句执行完成后,InnoDB只保证写完了redo log、内存,可能还没来得及将数据写到磁盘。

问题2:为什么binlog cache是每个线程自己维护的,而redo log buffer是全局共用的?

回答:MySQL这么设计的主要原因是,binlog是不能“被打断的”。一个事务的binlog必须连续写,因此要整个事务完成后,再一起写到文件里。

而redo log并没有这个要求,中间有生成的日志可以写到redo log buffer中。redo log buffer中的内容还能“搭便车”,其他事务提交的时候可以被一起写到磁盘中。

问题3:事务执行期间,还没到提交阶段,如果发生crash的话,redo log肯定丢了,这会不会导致主备不一致呢?

回答:不会。因为这时候binlog 也还在binlog cache里,没发给备库。crash以后redo log和binlog都没有了,从业务角度看这个事务也没有提交,所以数据是一致的。

问题4:如果binlog写完盘以后发生crash,这时候还没给客户端答复就重启了。等客户端再重连进来,发现事务已经提交成功了,这是不是bug?

回答:不是。

你可以设想一下更极端的情况,整个事务都提交成功了,redo log commit完成了,备库也收到binlog并执行了。但是主库和客户端网络断开了,导致事务成功的包返回不回去,这时候客户端也会收到“网络断开”的异常。这种也只能算是事务成功的,不能认为是bug。

实际上数据库的crash-safe保证的是:

  1. 如果客户端收到事务成功的消息,事务就一定持久化了;

  2. 如果客户端收到事务失败(比如主键冲突、回滚等)的消息,事务就一定失败了;

  3. 如果客户端收到“执行异常”的消息,应用需要重连后通过查询当前状态来继续后续的逻辑。此时数据库只需要保证内部(数据和日志之间,主库和备库之间)一致就可以了


 在什么时候会把线上生产库设置成“非双1”?

  1. 业务高峰期。一般如果有预知的高峰期,把主库设置成“非双1”。

  2. 备库延迟,为了让备库尽快赶上主库。

  3. 用备份恢复主库的副本,应用binlog的过程。

  4. 批量导入数据的时候。

 一般情况下,把生产库改成“非双1”配置,是设置innodb_flush_logs_at_trx_commit=2、sync_binlog=1000。

由于从库设置了 binlog_group_commit_sync_delay和binlog_group_commit_sync_no_delay_count导致一直延迟的情况。我们在主库设置这两个参数,是为了减少binlog的写盘压力。备库这么设置,尤其在“快要追上”的时候,就反而会受这两个参数的拖累。一般追主备就用“非双1”(追上记得改回来)。

sync_delay和sync_no_delay_count的逻辑先走,因此该等还是会等。等到满足了这两个条件之一,就进入sync_binlog阶段。这时候如果判断sync_binlog=0,就直接跳过,还是不调fsync。


MySQL是怎么保证主备一致的

MySQL主备的基本原理

基本的主备切换流程。

MySQL45讲(第22-25讲)_第9张图片

在状态1中,客户端的读写都直接访问节点A,而节点B是A的备库,只是将A的更新都同步过来,到本地执行。这样可以保持节点B和A的数据是相同的。

当需要切换的时候,就切成状态2。这时候客户端读写访问的都是节点B,而节点A是B的备库。

在状态1中,虽然节点B没有被直接访问,但是我依然建议你把节点B(也就是备库设置成只读(readonly)模式。这样做,有以下几个考虑:

  1. 有时候一些运营类的查询语句会被放到备库上去查,设置为只读可以防止误操作;

  2. 防止切换逻辑有bug,比如切换过程中出现双写,造成主备不一致;

  3. 可以用readonly状态,来判断节点的角色。

readonly设置对超级(super)权限用户是无效的,而用于同步更新的线程,就拥有超级权限。

节点A到B这条线的内部流程是什么样的。图2中画出的就是一个update语句在节点A执行,然后同步到节点B的完整流程图。

MySQL45讲(第22-25讲)_第10张图片

主库接收到客户端的更新请求后,执行内部事务的更新逻辑,同时写binlog。

备库B跟主库A之间维持了一个长连接。主库A内部有一个线程,专门用于服务备库B的这个长连接。一个事务日志同步的完整过程是这样的:

  1. 在备库B上通过change master命令,设置主库A的IP、端口、用户名、密码,以及要从哪个位置开始请求binlog,这个位置包含文件名和日志偏移量。

  2. 在备库B上执行start slave命令,这时候备库会启动两个线程,就是图中的io_thread和sql_thread。其中io_thread负责与主库建立连接。

  3. 主库A校验完用户名、密码后,开始按照备库B传过来的位置,从本地读取binlog,发给B。

  4. 备库B拿到binlog后,写到本地文件,称为中转日志(relay log)。

  5. sql_thread读取中转日志,解析出日志里的命令,并执行。

这里需要说明,后来由于多线程复制方案的引入,sql_thread演化成为了多个线程

binlog的三种格式对比(statement,row,mixed)

为了便于描述binlog的这三种格式间的区别,我创建了一个表,并初始化几行数据。

mysql> CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `a` int(11) DEFAULT NULL,
  `t_modified` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`),
  KEY `a` (`a`),
  KEY `t_modified`(`t_modified`)
) ENGINE=InnoDB;

insert into t values(1,1,'2018-11-13');
insert into t values(2,2,'2018-11-12');
insert into t values(3,3,'2018-11-11');
insert into t values(4,4,'2018-11-10');
insert into t values(5,5,'2018-11-09');

如果要在表中删除一行数据的话,我们来看看这个delete语句的binlog是怎么记录的。

注意,下面这个语句包含注释,如果你用MySQL客户端来做这个实验的话,要记得加-c参数,否则客户端会自动去掉注释。

mysql> delete from t /*comment*/  where a>=4 and t_modified<='2018-11-10' limit 1;

当binlog_format=statement时,binlog里面记录的就是SQL语句的原文。你可以用

mysql> show binlog events in 'master.000001';

命令看binlog中的内容。

现在,我们来看一下图3的输出结果。

  • 第一行SET @@SESSION.GTID_NEXT='ANONYMOUS’你可以先忽略,后面文章我们会在介绍主备切换的时候再提到;
  • 第二行是一个BEGIN,跟第四行的commit对应,表示中间是一个事务;
  • 第三行就是真实执行的语句了。可以看到,在真实执行的delete命令之前,还有一个“use ‘test’”命令。这条命令不是我们主动执行的,而是MySQL根据当前要操作的表所在的数据库,自行添加的。这样做可以保证日志传到备库去执行的时候,不论当前的工作线程在哪个库里,都能够正确地更新到test库的表t。
    use 'test’命令之后的delete 语句,就是我们输入的SQL原文了。可以看到,binlog“忠实”地记录了SQL命令,甚至连注释也一并记录了。
  • 最后一行是一个COMMIT。你可以看到里面写着xid=61。

为了说明statement 和 row格式的区别,我们来看一下这条delete命令的执行效果图:

MySQL45讲(第22-25讲)_第11张图片

可以看到,运行这条delete命令产生了一个warning,原因是当前binlog设置的是statement格式,并且语句中有limit,所以这个命令可能是unsafe的。

为什么这么说呢?这是因为delete 带limit,很可能会出现主备数据不一致的情况。比如上面这个例子:

  1. 如果delete语句使用的是索引a,那么会根据索引a找到第一个满足条件的行,也就是说删除的是a=4这一行;

  2. 但如果使用的是索引t_modified,那么删除的就是 t_modified='2018-11-09’也就是a=5这一行。

由于statement格式下,记录到binlog里的是语句原文,因此可能会出现这样一种情况:在主库执行这条SQL语句的时候,用的是索引a;而在备库执行这条SQL语句的时候,却使用了索引t_modified。因此,MySQL认为这样写是有风险的。

如果把binlog的格式改为binlog_format=‘row’, 是不是就没有这个问题了呢?先来看看这时候binog中的内容吧。

MySQL45讲(第22-25讲)_第12张图片

可以看到,与statement格式的binlog相比,前后的BEGIN和COMMIT是一样的。但是,row格式的binlog里没有了SQL语句的原文,而是替换成了两个event:Table_map和Delete_rows。

  1. Table_map event,用于说明接下来要操作的表是test库的表t;

  2. Delete_rows event,用于定义删除的行为。

其实,我们通过图5是看不到详细信息的,还需要借助mysqlbinlog工具,用下面这个命令解析和查看binlog中的内容。因为图5中的信息显示,这个事务的binlog是从8900这个位置开始的,所以可以用start-position参数来指定从这个位置的日志开始解析。

mysqlbinlog  -vv data/master.000001 --start-position=8900;

MySQL45讲(第22-25讲)_第13张图片

从这个图中,我们可以看到以下几个信息:

  • server id 1,表示这个事务是在server_id=1的这个库上执行的。
  • 每个event都有CRC32的值,这是因为我把参数binlog_checksum设置成了CRC32。
  • Table_map event跟在图5中看到的相同,显示了接下来要打开的表,map到数字226。现在我们这条SQL语句只操作了一张表,如果要操作多张表呢?每个表都有一个对应的Table_map event、都会map到一个单独的数字,用于区分对不同表的操作。
  • 我们在mysqlbinlog的命令中,使用了-vv参数是为了把内容都解析出来,所以从结果里面可以看到各个字段的值(比如,@1=4、 @2=4这些值)。
  • binlog_row_image的默认配置是FULL,因此Delete_event里面,包含了删掉的行的所有字段的值。如果把binlog_row_image设置为MINIMAL,则只会记录必要的信息,在这个例子里,就是只会记录id=4这个信息。
  • 最后的Xid event,用于表示事务被正确地提交了。

当binlog_format使用row格式的时候,binlog里面记录了真实删除行的主键id,这样binlog传到备库去的时候,就肯定会删除id=4的行,不会有主备删除不同行的问题。

为什么会有mixed格式的binlog?

为什么会有mixed这种binlog格式的存在场景?推论过程是这样的:

  • 因为有些statement格式的binlog可能会导致主备不一致,所以要使用row格式。
  • 但row格式的缺点是,很占空间。比如你用一个delete语句删掉10万行数据,用statement的话就是一个SQL语句被记录到binlog中,占用几十个字节的空间。但如果用row格式的binlog,就要把这10万条记录都写到binlog中。这样做,不仅会占用更大的空间,同时写binlog也要耗费IO资源,影响执行速度。
  • 所以,MySQL就取了个折中方案,也就是有了mixed格式的binlog。mixed格式的意思是,MySQL自己会判断这条SQL语句是否可能引起主备不一致,如果有可能,就用row格式,否则就用statement格式。

也就是说,mixed格式可以利用statment格式的优点,同时又避免了数据不一致的风险。

因此,如果你的线上MySQL设置的binlog格式是statement的话,那基本上就可以认为这是一个不合理的设置。你至少应该把binlog的格式设置为mixed。

比如我们这个例子,设置为mixed后,就会记录为row格式;而如果执行的语句去掉limit 1,就会记录为statement格式。

现在越来越多的场景要求把MySQL的binlog格式设置成row。这么做的理由有很多,一个可以直接看出来的好处:恢复数据

接下来,分别从delete、insert和update这三种SQL语句的角度,来看看数据恢复的问题。

通过图6你可以看出来,即使我执行的是delete语句,row格式的binlog也会把被删掉的行的整行信息保存起来。所以,如果你在执行完一条delete语句以后,发现删错数据了,可以直接把binlog中记录的delete语句转成insert,把被错删的数据插入回去就可以恢复了。

如果你是执行错了insert语句呢?那就更直接了。row格式下,insert语句的binlog里会记录所有的字段信息,这些信息可以用来精确定位刚刚被插入的那一行。这时,你直接把insert语句转成delete语句,删除掉这被误插入的一行数据就可以了。

如果执行的是update语句的话,binlog里面会记录修改前整行的数据和修改后的整行数据。所以,如果你误执行了update语句的话,只需要把这个event前后的两行信息对调一下,再去数据库里面执行,就能恢复这个更新操作了。

其实,由delete、insert或者update语句导致的数据操作错误,需要恢复到操作之前状态的情况,也时有发生。MariaDB的Flashback工具就是基于上面介绍的原理来回滚数据的。

虽然mixed格式的binlog现在已经用得不多了,但这里我还是要再借用一下mixed格式来说明一个问题,来看一下这条SQL语句:

mysql> insert into t values(10,10, now());

如果我们把binlog格式设置为mixed,你觉得MySQL会把它记录为row格式还是statement格式呢?

先不要着急说结果,我们一起来看一下这条语句执行的效果。

可以看到,MySQL用的居然是statement格式。你一定会奇怪,如果这个binlog过了1分钟才传给备库的话,那主备的数据不就不一致了吗?

接下来,我们再用mysqlbinlog工具来看看:

从图中的结果可以看到,原来binlog在记录event的时候,多记了一条命令:SET TIMESTAMP=1546103491。它用 SET TIMESTAMP命令约定了接下来的now()函数的返回时间。

因此,不论这个binlog是1分钟之后被备库执行,还是3天后用来恢复这个库的备份,这个insert语句插入的行,值都是固定的。也就是说,通过这条SET TIMESTAMP命令,MySQL就确保了主备数据的一致性。

我之前看过有人在重放binlog数据的时候,是这么做的:用mysqlbinlog解析出日志,然后把里面的statement语句直接拷贝出来执行。

你现在知道了,这个方法是有风险的。因为有些语句的执行结果是依赖于上下文命令的,直接执行的结果很可能是错误的。

所以,用binlog来恢复数据的标准做法是,用 mysqlbinlog工具解析出来,然后把解析结果整个发给MySQL执行。类似下面的命令:

mysqlbinlog master.000001  --start-position=2738 --stop-position=2973 | mysql -h127.0.0.1 -P13000 -u$user -p$pwd;

这个命令的意思是,将 master.000001 文件里面从第2738字节到第2973字节中间这段内容解析出来,放到MySQL去执行。

循环复制问题

binlog的特性确保了在备库执行相同的binlog,可以得到与主库相同的状态。

因此,我们可以认为正常情况下主备的数据是一致的。也就是说,图1中A、B两个节点的内容是一致的。其实,图1中我画的是M-S结构,但实际生产上使用比较多的是双M结构,也就是图9所示的主备切换流程。

MySQL45讲(第22-25讲)_第14张图片

对比图9和图1,你可以发现,双M结构和M-S结构,其实区别只是多了一条线,即:节点A和B之间总是互为主备关系。这样在切换的时候就不用再修改主备关系。

但是,双M结构还有一个问题需要解决。

业务逻辑在节点A上更新了一条语句,然后再把生成的binlog 发给节点B,节点B执行完这条更新语句后也会生成binlog。(我建议你把参数log_slave_updates设置为on,表示备库执行relay log后生成binlog)。

那么,如果节点A同时是节点B的备库,相当于又把节点B新生成的binlog拿过来执行了一次,然后节点A和B间,会不断地循环执行这个更新语句,也就是循环复制了。这个要怎么解决呢?

MySQL在binlog中记录了这个命令第一次执行时所在实例的server id。因此,我们可以用下面的逻辑,来解决两个节点间的循环复制的问题:

  1. 规定两个库的server id必须不同,如果相同,则它们之间不能设定为主备关系;

  2. 一个备库接到binlog并在重放的过程中,生成与原binlog的server id相同的新的binlog;

  3. 每个库在收到从自己的主库发过来的日志后,先判断server id,如果跟自己的相同,表示这个日志是自己生成的,就直接丢弃这个日志。

按照这个逻辑,如果我们设置了双M结构,日志的执行流就会变成这样:

  1. 从节点A更新的事务,binlog里面记的都是A的server id;

  2. 传到节点B执行一次以后,节点B生成的binlog 的server id也是A的server id;

  3. 再传回给节点A,A判断到这个server id与自己的相同,就不会再处理这个日志。所以,死循环在这里就断掉了。


MySQL通过判断server id的方式,断掉死循环。但是,这个机制其实并不完备,在某些场景下,还是有可能出现死循环。

你能构造出一个这样的场景吗?又应该怎么解决呢?

一种场景是,在一个主库更新事务后,用命令set global server_id=x修改了server_id。等日志再传回来的时候,发现server_id跟自己的server_id不同,就只能执行了。

另一种场景是,有三个节点的时候,如图7所示,trx1是在节点 B执行的,因此binlog上的server_id就是B,binlog传给节点 A,然后A和A’搭建了双M结构,就会出现循环复制。

MySQL45讲(第22-25讲)_第15张图片

这种三节点复制的场景,做数据库迁移的时候会出现。

如果出现了循环复制,可以在A或者A’上,执行如下命令:

stop slave;
CHANGE MASTER TO IGNORE_SERVER_IDS=(server_id_of_B);
start slave;

这样这个节点收到日志后就不会再执行。过一段时间后,再执行下面的命令把这个值改回来。

stop slave;
CHANGE MASTER TO IGNORE_SERVER_IDS=();
start slave;

MySQL是怎么保证高可用的

主备延迟

主备切换可能是一个主动运维动作,比如软件升级、主库所在机器按计划下线等,也可能是被动操作,比如主库所在机器掉电。

“同步延迟”。与数据同步有关的时间点主要包括以下三个:

  1. 主库A执行完成一个事务,写入binlog,我们把这个时刻记为T1;

  2. 之后传给备库B,我们把备库B接收完这个binlog的时刻记为T2;

  3. 备库B执行完成这个事务,我们把这个时刻记为T3。

所谓主备延迟,就是同一个事务,在备库执行完成的时间和主库执行完成的时间之间的差值,也就是T3-T1。

你可以在备库上执行show slave status命令,它的返回结果里面会显示seconds_behind_master,用于表示当前备库延迟了多少秒。

seconds_behind_master的计算方法是这样的:

  1. 每个事务的binlog 里面都有一个时间字段,用于记录主库上写入的时间

  2. 备库取出当前正在执行的事务的时间字段的值计算它与当前系统时间的差值,得到seconds_behind_master。

可以看到,其实seconds_behind_master这个参数计算的就是T3-T1。所以,我们可以用seconds_behind_master来作为主备延迟的值,这个值的时间精度是

如果主备库机器的系统时间设置不一致,会不会导致主备延迟的值不准?

其实不会的。因为,备库连接到主库的时候,会通过执行SELECT UNIX_TIMESTAMP()函数来获得当前主库的系统时间。如果这时候发现主库的系统时间与自己不一致备库在执行seconds_behind_master计算的时候会自动扣掉这个差值。

需要说明的是,在网络正常的时候,日志从主库传给备库所需的时间是很短的,即T2-T1的值是非常小的。也就是说,网络正常情况下,主备延迟的主要来源是备库接收完binlog和执行完这个事务之间的时间差。

所以说,主备延迟最直接的表现是备库消费中转日志(relay log)的速度,比主库生产binlog的速度要慢。

主备延迟的来源

首先,有些部署条件下,备库所在机器的性能要比主库所在的机器性能差。

一般情况下,有人这么部署时的想法是,反正备库没有请求,所以可以用差一点儿的机器。或者,他们会把20个主库放在4台机器上,而把备库集中在一台机器上。

其实我们都知道,更新请求对IOPS的压力,在主库和备库上是无差别的。所以,做这种部署时,一般都会将备库设置为“非双1”的模式。

但实际上,更新过程中也会触发大量的读操作。所以,当备库主机上的多个备库都在争抢资源的时候,就可能会导致主备延迟了。

当然,这种部署现在比较少了。因为主备可能发生切换,备库随时可能变成主库,所以主备库选用相同规格的机器,并且做对称部署,是现在比较常见的情况。

追问1:但是,做了对称部署以后,还可能会有延迟。这是为什么呢?

这就是第二种常见的可能了,即备库的压力大。一般的想法是,主库既然提供了写能力,那么备库可以提供一些读能力。或者一些运营后台需要的分析语句,不能影响正常业务,所以只能在备库上跑。

我真就见过不少这样的情况。由于主库直接影响业务,大家使用起来会比较克制,反而忽视了备库的压力控制。结果就是,备库上的查询耗费了大量的CPU资源,影响了同步速度,造成主备延迟。

这种情况,我们一般可以这么处理:

  1. 一主多从。除了备库外,可以多接几个从库,让这些从库来分担读的压力。

  2. 通过binlog输出到外部系统,比如Hadoop这类系统,让外部系统提供统计类查询的能力。

其中,一主多从的方式大都会被采用。因为作为数据库系统,还必须保证有定期全量备份的能力。而从库,就很适合用来做备份。

追问2:采用了一主多从,保证备库的压力不会超过主库,还有什么情况可能导致主备延迟吗?

这就是第三种可能了,即大事务。

大事务这种情况很好理解。因为主库上必须等事务执行完成才会写入binlog,再传给备库。所以,如果一个主库上的语句执行10分钟,那这个事务很可能就会导致从库延迟10分钟。

不要一次性地用delete语句删除太多数据。其实,这就是一个典型的大事务场景。

比如,一些归档类的数据,平时没有注意删除历史数据,等到空间快满了,业务开发人员要一次性地删掉大量历史数据。同时,又因为要避免在高峰期操作会影响业务,所以会在晚上执行这些大量数据的删除操作。

结果,负责的DBA同学半夜就会收到延迟报警。然后,DBA团队就要求你后续再删除数据的时候,要控制每个事务删除的数据量,分成多次删除。

另一种典型的大事务场景,就是大表DDL。这个场景,我在前面的文章中介绍过。处理方案就是,计划内的DDL,建议使用gh-ost方案。

追问3:如果主库上也不做大事务了,还有什么原因会导致主备延迟吗?

造成主备延迟还有一个大方向的原因,就是备库的并行复制能力

由于主备延迟的存在,所以在主备切换的时候,就相应的有不同的策略。

可靠性优先策略

在图1的双M结构下,从状态1到状态2切换的详细过程是这样的:

  1. 判断备库B现在的seconds_behind_master,如果小于某个值(比如5秒)继续下一步,否则持续重试这一步;

  2. 把主库A改成只读状态,即把readonly设置为true;

  3. 判断备库B的seconds_behind_master的值,直到这个值变成0为止;

  4. 把备库B改成可读写状态,也就是把readonly 设置为false;

  5. 把业务请求切到备库B。

这个切换流程,一般是由专门的HA系统来完成的,我们暂时称之为可靠性优先流程。

MySQL45讲(第22-25讲)_第16张图片

备注:图中的SBM,是seconds_behind_master参数的简写。

可以看到,这个切换流程中是有不可用时间的。因为在步骤2之后,主库A和备库B都处于readonly状态,也就是说这时系统处于不可写状态,直到步骤5完成后才能恢复。

在这个不可用状态中,比较耗费时间的是步骤3,可能需要耗费好几秒的时间。这也是为什么需要在步骤1先做判断,确保seconds_behind_master的值足够小。

试想如果一开始主备延迟就长达30分钟,而不先做判断直接切换的话,系统的不可用时间就会长达30分钟,这种情况一般业务都是不可接受的。

当然,系统的不可用时间,是由这个数据可靠性优先的策略决定的。你也可以选择可用性优先的策略,来把这个不可用时间几乎降为0。

可用性优先策略

如果我强行把步骤4、5调整到最开始执行,也就是说不等主备数据同步,直接把连接切到备库B,并且让备库B可以读写,那么系统几乎就没有不可用时间了。

我们把这个切换流程,暂时称作可用性优先流程。这个切换流程的代价,就是可能出现数据不一致的情况。

接下来,我就和你分享一个可用性优先流程产生数据不一致的例子。假设有一个表 t:

mysql> CREATE TABLE `t` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
  `c` int(11) unsigned DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;

insert into t(c) values(1),(2),(3);

这个表定义了一个自增主键id,初始化数据后,主库和备库上都是3行数据。接下来,业务人员要继续在表t上执行两条插入语句的命令,依次是:

insert into t(c) values(4);
insert into t(c) values(5);

假设,现在主库上其他的数据表有大量的更新,导致主备延迟达到5秒。在插入一条c=4的语句后,发起了主备切换。

图3是可用性优先策略,且binlog_format=mixed时的切换流程和数据结果。

MySQL45讲(第22-25讲)_第17张图片

现在,我们一起分析下这个切换流程:

  1. 步骤2中,主库A执行完insert语句,插入了一行数据(4,4),之后开始进行主备切换。

  2. 步骤3中,由于主备之间有5秒的延迟,所以备库B还没来得及应用“插入c=4”这个中转日志,就开始接收客户端“插入 c=5”的命令。

  3. 步骤4中,备库B插入了一行数据(4,5),并且把这个binlog发给主库A。

  4. 步骤5中,备库B执行“插入c=4”这个中转日志,插入了一行数据(5,4)。而直接在备库B执行的“插入c=5”这个语句,传到主库A,就插入了一行新数据(5,5)。

最后的结果就是,主库A和备库B上出现了两行不一致的数据。可以看到,这个数据不一致,是由可用性优先流程导致的。

那么,如果我还是用可用性优先策略,但设置binlog_format=row,情况又会怎样呢?

因为row格式在记录binlog的时候,会记录新插入的行的所有字段值,所以最后只会有一行不一致。而且,两边的主备同步的应用线程会报错duplicate key error并停止。也就是说,这种情况下,备库B的(5,4)和主库A的(5,5)这两行数据,都不会被对方执行。

MySQL45讲(第22-25讲)_第18张图片

从上面的分析中,你可以看到一些结论:

  1. 使用row格式的binlog时,数据不一致的问题更容易被发现。而使用mixed或者statement格式的binlog时,数据很可能悄悄地就不一致了。如果你过了很久才发现数据不一致的问题,很可能这时的数据不一致已经不可查,或者连带造成了更多的数据逻辑不一致。

  2. 主备切换的可用性优先策略会导致数据不一致。因此,大多数情况下,我都建议你使用可靠性优先策略。毕竟对数据服务来说的话,数据的可靠性一般还是要优于可用性的。

但事无绝对,有没有哪种情况数据的可用性优先级更高呢?

答案是,有的。

我曾经碰到过这样的一个场景:

  • 有一个库的作用是记录操作日志。这时候,如果数据不一致可以通过binlog来修补,而这个短暂的不一致也不会引发业务问题。
  • 同时,业务系统依赖于这个日志写入逻辑,如果这个库不可写,会导致线上的业务操作无法执行。

这时候,你可能就需要选择先强行切换,事后再补数据的策略。

当然,事后复盘的时候,我们想到了一个改进措施就是,让业务逻辑不要依赖于这类日志的写入。也就是说,日志写入这个逻辑模块应该可以降级,比如写到本地文件,或者写到另外一个临时库里面。

这样的话,这种场景就又可以使用可靠性优先策略了。

按照可靠性优先的思路,异常切换会是什么效果?

假设,主库A和备库B间的主备延迟是30分钟,这时候主库A掉电了,HA系统要切换B作为主库。我们在主动切换的时候,可以等到主备延迟小于5秒的时候再启动切换,但这时候已经别无选择了。

MySQL45讲(第22-25讲)_第19张图片

采用可靠性优先策略的话,你就必须得等到备库B的seconds_behind_master=0之后,才能切换。但现在的情况比刚刚更严重,并不是系统只读、不可写的问题了,而是系统处于完全不可用的状态。因为,主库A掉电后,我们的连接还没有切到备库B。

你可能会问,那能不能直接切换到备库B,但是保持B只读呢?

这样也不行。

因为,这段时间内,中转日志还没有应用完成,如果直接发起主备切换,客户端查询看不到之前执行完成的事务,会认为有“数据丢失”。

虽然随着中转日志的继续应用,这些数据会恢复回来,但是对于一些业务来说,查询到“暂时丢失数据的状态”也是不能被接受的。

在满足数据可靠性的前提下,MySQL高可用系统的可用性,是依赖于主备延迟的。延迟的时间越小,在主库故障的时候,服务恢复需要的时间就越短,可用性就越高。


一般现在的数据库运维系统都有备库延迟监控,其实就是在备库上执行 show slave status,采集seconds_behind_master的值。

假设,现在你看到你维护的一个备库,它的延迟监控的图像类似图6,是一个45°斜向上的线段,你觉得可能是什么原因导致呢?你又会怎么去确认这个原因呢?

MySQL45讲(第22-25讲)_第20张图片

现象:备库的同步在这段时间完全被堵住了

产生这种现象典型的场景主要包括两种:

  • 一种是大事务(包括大表DDL、一个事务操作很多行);
  • 还有一种情况比较隐蔽,就是备库起了一个长事务,比如
begin; 
select * from t limit 1;

然后就不动了。

这时候主库对表t做了一个加字段操作,即使这个表很小,这个DDL在备库应用的时候也会被堵住,也不能看到这个现象。

你可能感兴趣的:(MySQL,数据库,sql,mysql)