( A T ) T = A \left(\boldsymbol{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\boldsymbol{A} (AT)T=A
( A B ) T = B T A T (\boldsymbol{A B})^{\mathrm{T}}=\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} (AB)T=BTAT
设 A = ( a i j ) m × s , B = ( b i j ) s × n \boldsymbol{A}=\left(a_{i j}\right)_{m \times s}, \boldsymbol{B}=\left(b_{i j}\right)_{s \times n} A=(aij)m×s,B=(bij)s×n,记 A B = C = ( c i j ) m × n , B T A T = D = ( d i j ) m × m \boldsymbol{A B}=\boldsymbol{C}=\left(c_{i j}\right)_{m \times n}, \boldsymbol{B}^{T} \boldsymbol{A}^{T}=\boldsymbol{D}=\left(d_{i j}\right)_{m \times m} AB=C=(cij)m×n,BTAT=D=(dij)m×m,按照矩阵乘法的定义,有
c j i = ∑ k = 1 s a j k b k i c_{j i}=\sum_{k=1}^{s} a_{j k} b_{k i} cji=k=1∑sajkbki
而 B T \boldsymbol{B}^{T} BT的第 i i i行为 ( b 1 i , ⋯ , b s i ) , A T \left(b_{1 i}, \cdots, b_{s i}\right), \boldsymbol{A}^{T} (b1i,⋯,bsi),AT, A T A^{T} AT的第 j j j列为 ( a j 1 , ⋯ , a j s ) T \left(a_{j 1}, \cdots, a_{j s}\right)^{T} (aj1,⋯,ajs)T,因此
d i j = ∑ k = 1 s b k i a j k = ∑ k = 1 s a j k b k i d_{i j}=\sum_{k=1}^{s} b_{k i} a_{j k}=\sum_{k=1}^{s} a_{j k} b_{k i} dij=k=1∑sbkiajk=k=1∑sajkbki
所以
d i j = c j i ( i = 1 , 2 , ⋯ , n ; j = 1 , 2 , ⋯ , m ) d_{i j}=c_{j i} \quad(i=1,2, \cdots, n ; j=1,2, \cdots, m) dij=cji(i=1,2,⋯,n;j=1,2,⋯,m)
则 D = C T \boldsymbol{D}=\boldsymbol{C}^{\mathrm{T}} D=CT,即 ( A B ) T = B T A T (\boldsymbol{A B})^{\mathrm{T}}=\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} (AB)T=BTAT
因为
( A B ) ( B − 1 A − 1 ) = A ( B B − 1 ) A − 1 = A E A − 1 = E (\boldsymbol{A B})\left(\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}\right)=\boldsymbol{A}\left(\boldsymbol{B B}^{-1}\right) \boldsymbol{A}^{-1}=\boldsymbol{A E A}^{-1}=\boldsymbol{E} (AB)(B−1A−1)=A(BB−1)A−1=AEA−1=E
( B − 1 A − 1 ) ( A B ) = B − 1 ( A − 1 A ) B = B − 1 E B = E \left(\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}\right)(\boldsymbol{A} \boldsymbol{B})=\boldsymbol{B}^{-1}\left(\boldsymbol{A}^{-1} \boldsymbol{A}\right) \boldsymbol{B}=\boldsymbol{B}^{-1} \boldsymbol{E} \boldsymbol{B}=\boldsymbol{E} (B−1A−1)(AB)=B−1(A−1A)B=B−1EB=E
所以
( A B ) − 1 = B − 1 A − 1 (\boldsymbol{A} \boldsymbol{B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1} (AB)−1=B−1A−1