C#,数值计算——插值和外推,Base_interp的计算方法与源程序

1 文本格式

using System;

namespace Legalsoft.Truffer
{
    ///


    /// Abstract base class used by all interpolation routines in this chapter.
    /// Only the routine interp is called directly by the user.
    ///

    public abstract class Base_interp
    {
        public int n { get; set; }
        public int mm { get; set; }
        public int jsav { get; set; }
        public int cor { get; set; }
        public int dj { get; set; }
        public double[] xx { get; set; }
        public double[] yy { get; set; }

        ///


        /// Set up for interpolating on a table of x's and y's of length m. Normally
        /// called by a derived class, not by the user.
        ///

        ///
        ///
        ///
        public Base_interp(double[] x, double y, int m)
        {
            this.n = x.Length;
            this.mm = m;
            this.jsav = 0;
            this.cor = 0;
            this.xx = x;
            this.yy = new double[x.Length];
            for (int i = 0; i < yy.Length; i++)
            {
                yy[i] = y;
            }
            dj = Math.Max(1, (int)Math.Pow((double)n, 0.25));
        }

        public double interp(double x)
        {
            int jlo = (cor != 0) ? hunt(x) : locate(x);
            return rawinterp(jlo, x);
        }

        ///


        /// Given a value x, return a value j such that x is (insofar as possible)
        /// centered in the subrange xx[j..j + mm - 1], where xx is the stored pointer.
        /// The values in xx must be monotonic, either increasing or decreasing.
        /// The returned value is not less than 0, nor greater than n-1.
        ///

        ///
        ///
        ///
        public int locate(double x)
        {
            if (n < 2 || mm < 2 || mm > n)
            {
                throw new Exception("locate size error");
            }
            bool ascnd = (xx[n - 1] >= xx[0]);
            int jl = 0;
            int ju = n - 1;
            while (ju - jl > 1)
            {
                int jm = (ju + jl) >> 1;
                if (x >= xx[jm] == ascnd)
                {
                    jl = jm;
                }
                else
                {
                    ju = jm;
                }
            }
            cor = Math.Abs(jl - jsav) > dj ? 0 : 1;
            jsav = jl;
            return Math.Max(0, Math.Min(n - mm, jl - ((mm - 2) >> 1)));
        }

        ///


        /// Given a value x, return a value j such that x is (insofar as possible)
        /// centered in the subrange xx[j..j + mm - 1], where xx is the stored pointer.
        /// The values in xx must be monotonic, either increasing or decreasing.
        /// The returned value is not less than 0, nor greater than n-1.
        ///

        ///
        ///
        ///
        public int hunt(double x)
        {
            int jl = jsav;
            int inc = 1;
            if (n < 2 || mm < 2 || mm > n)
            {
                throw new Exception("hunt size error");
            }
            bool ascnd = (xx[n - 1] >= xx[0]);
            int ju;
            if (jl < 0 || jl > n - 1)
            {
                jl = 0;
                ju = n - 1;
            }
            else
            {
                if (x >= xx[jl] == ascnd)
                {
                    for (; ; )
                    {
                        ju = jl + inc;
                        if (ju >= n - 1)
                        {
                            ju = n - 1;
                            break;
                        }
                        else if (x < xx[ju] == ascnd)
                        {
                            break;
                        }
                        else
                        {
                            jl = ju;
                            inc += inc;
                        }
                    }
                }
                else
                {
                    ju = jl;
                    for (; ; )
                    {
                        jl = jl - inc;
                        if (jl <= 0)
                        {
                            jl = 0;
                            break;
                        }
                        else if (x >= xx[jl] == ascnd)
                        {
                            break;
                        }
                        else
                        {
                            ju = jl;
                            inc += inc;
                        }
                    }
                }
            }
            while (ju - jl > 1)
            {
                int jm = (ju + jl) >> 1;
                if (x >= xx[jm] == ascnd)
                {
                    jl = jm;
                }
                else
                {
                    ju = jm;
                }
            }
            cor = Math.Abs(jl - jsav) > dj ? 0 : 1;
            jsav = jl;
            return Math.Max(0, Math.Min(n - mm, jl - ((mm - 2) >> 1)));
        }

        public abstract double rawinterp(int jlo, double x);

    }
}
 

2 代码格式

using System;

namespace Legalsoft.Truffer
{
    /// 
    /// Abstract base class used by all interpolation routines in this chapter.
    /// Only the routine interp is called directly by the user.
    /// 
    public abstract class Base_interp
    {
        public int n { get; set; }
        public int mm { get; set; }
        public int jsav { get; set; }
        public int cor { get; set; }
        public int dj { get; set; }
        public double[] xx { get; set; }
        public double[] yy { get; set; }

        /// 
        /// Set up for interpolating on a table of x's and y's of length m. Normally
        /// called by a derived class, not by the user.
        /// 
        /// 
        /// 
        /// 
        public Base_interp(double[] x, double y, int m)
        {
            this.n = x.Length;
            this.mm = m;
            this.jsav = 0;
            this.cor = 0;
            this.xx = x;
            this.yy = new double[x.Length];
            for (int i = 0; i < yy.Length; i++)
            {
                yy[i] = y;
            }
            dj = Math.Max(1, (int)Math.Pow((double)n, 0.25));
        }

        public double interp(double x)
        {
            int jlo = (cor != 0) ? hunt(x) : locate(x);
            return rawinterp(jlo, x);
        }

        /// 
        /// Given a value x, return a value j such that x is (insofar as possible)
        /// centered in the subrange xx[j..j + mm - 1], where xx is the stored pointer.
        /// The values in xx must be monotonic, either increasing or decreasing.
        /// The returned value is not less than 0, nor greater than n-1.
        /// 
        /// 
        /// 
        /// 
        public int locate(double x)
        {
            if (n < 2 || mm < 2 || mm > n)
            {
                throw new Exception("locate size error");
            }
            bool ascnd = (xx[n - 1] >= xx[0]);
            int jl = 0;
            int ju = n - 1;
            while (ju - jl > 1)
            {
                int jm = (ju + jl) >> 1;
                if (x >= xx[jm] == ascnd)
                {
                    jl = jm;
                }
                else
                {
                    ju = jm;
                }
            }
            cor = Math.Abs(jl - jsav) > dj ? 0 : 1;
            jsav = jl;
            return Math.Max(0, Math.Min(n - mm, jl - ((mm - 2) >> 1)));
        }

        /// 
        /// Given a value x, return a value j such that x is (insofar as possible)
        /// centered in the subrange xx[j..j + mm - 1], where xx is the stored pointer.
        /// The values in xx must be monotonic, either increasing or decreasing.
        /// The returned value is not less than 0, nor greater than n-1.
        /// 
        /// 
        /// 
        /// 
        public int hunt(double x)
        {
            int jl = jsav;
            int inc = 1;
            if (n < 2 || mm < 2 || mm > n)
            {
                throw new Exception("hunt size error");
            }
            bool ascnd = (xx[n - 1] >= xx[0]);
            int ju;
            if (jl < 0 || jl > n - 1)
            {
                jl = 0;
                ju = n - 1;
            }
            else
            {
                if (x >= xx[jl] == ascnd)
                {
                    for (; ; )
                    {
                        ju = jl + inc;
                        if (ju >= n - 1)
                        {
                            ju = n - 1;
                            break;
                        }
                        else if (x < xx[ju] == ascnd)
                        {
                            break;
                        }
                        else
                        {
                            jl = ju;
                            inc += inc;
                        }
                    }
                }
                else
                {
                    ju = jl;
                    for (; ; )
                    {
                        jl = jl - inc;
                        if (jl <= 0)
                        {
                            jl = 0;
                            break;
                        }
                        else if (x >= xx[jl] == ascnd)
                        {
                            break;
                        }
                        else
                        {
                            ju = jl;
                            inc += inc;
                        }
                    }
                }
            }
            while (ju - jl > 1)
            {
                int jm = (ju + jl) >> 1;
                if (x >= xx[jm] == ascnd)
                {
                    jl = jm;
                }
                else
                {
                    ju = jm;
                }
            }
            cor = Math.Abs(jl - jsav) > dj ? 0 : 1;
            jsav = jl;
            return Math.Max(0, Math.Min(n - mm, jl - ((mm - 2) >> 1)));
        }

        public abstract double rawinterp(int jlo, double x);

    }
}

你可能感兴趣的:(C#数值计算,Numerical,Recipes,c#,算法,数值计算,开发语言)