漫画:寻找股票买入卖出的最佳时机(整合版)

前一段时间,小灰发布了上下两篇关于股票买卖的算法题讲解,激发了很多小伙伴的兴趣。

这一次,小灰把这两篇漫画整合在一起,并且修改了其中的一些细节错误,感谢小伙伴们的指正。

—————  第二天  —————

什么意思呢?让我们来举个例子,给定如下数组:

该数组对应的股票涨跌曲线如下:

显然,从第2天价格为1的时候买入,从第5天价格为8的时候卖出,可以获得最大收益:

此时的最大收益是 8-1=7。

在上面这个例子中,最大值9在最小值1的前面,我们又该怎么交易?总不能让时间倒流吧?

————————————


以下图为例,假如我们已经确定价格4的时候为卖出时间点,那么此时最佳的买入时间点是哪一个呢?

我们要选择价格4之前的区间,且必须是区间内最小值,显然,这个最佳的选择是价格2的时间点。

第1步,初始化操作,把数组的第1个元素当做临时的最小价格;最大收益的初始值是0:

第2步,遍历到第2个元素,由于2<9,所以当前的最小价格变成了2;此时没有必要计算差值的必要(因为前面的元素比它大),当前的最大收益仍然是0:

第3步,遍历到第3个元素,由于7>2,所以当前的最小价格仍然是2;如我们刚才所讲,假设价格7为卖出点,对应的最佳买入点是价格2,两者差值7-2=5,5>0,所以当前的最大收益变成了5:

第4步,遍历到第4个元素,由于4>2,所以当前的最小价格仍然是2;4-2=2,2<5,所以当前的最大收益仍然是5:

第5步,遍历到第5个元素,由于3>2,所以当前的最小价格仍然是2;3-2=1,1<5,所以当前的最大收益仍然是5:

以此类推,我们一直遍历到数组末尾,此时的最小价格是1;最大收益是8-1=7:

public class StockProfit {

    public static int maxProfitFor1Time(int prices[]) {
        if(prices==null || prices.length==0) {
            return 0;
        }
        int minPrice = prices[0];
        int maxProfit = 0;
        for (int i = 1; i < prices.length; i++) {
            if (prices[i] < minPrice) {
                minPrice = prices[i];
            } else if(prices[i] - minPrice > maxProfit){
                maxProfit = prices[i] - minPrice;
            }
        }
        return maxProfit;
    }

    public static void main(String[] args) {
        int[] prices = {9,2,7,4,3,1,8,4};
        System.out.println(maxProfitFor1Time(prices));
    }

}

漫画:寻找股票买入卖出的最佳时机(整合版)_第1张图片

我们以下图这个数组为例,直观地看一下买入卖出的时机:

在图中,绿色的线段代表价格上涨的阶段。既然买卖次数不限,那么我们完全可以在每一次低点都进行买入,在每一次高点都进行卖出。

这样一来,所有绿色的部分都是我们的收益,最大总收益就是这些局部收益的加总:

(6-1)+(8-3)+(4-2)+(7-4) = 15

至于如何判断出这些绿色上涨阶段呢?很简单,我们遍历整个数组,但凡后一个元素大于前一个元素,就代表股价处于上涨阶段。

    public int maxProfitForAnyTime(int[] prices) {
        int maxProfit = 0;
        for (int i = 1; i < prices.length; i++) {
            if (prices[i] > prices[i-1])
                maxProfit += prices[i] - prices[i-1];
        }
        return maxProfit;
    }

漫画:寻找股票买入卖出的最佳时机(整合版)_第2张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第3张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第4张图片


漫画:寻找股票买入卖出的最佳时机(整合版)_第5张图片

我们仍然以之前的数组为例:

首先,寻找到1次买卖限制下的最佳买入卖出点:

两次买卖的位置是不可能交叉的,所以我们找到第1次买卖位置后,把这一对买入卖出点以及它们中间的元素全部剔除掉:

接下来,我们按照同样的思路,再从剩下的元素中寻找第2次买卖的最佳买入卖出点:

漫画:寻找股票买入卖出的最佳时机(整合版)_第6张图片

这样一来,我们就找到了最多2次买卖情况下的最佳选择:

漫画:寻找股票买入卖出的最佳时机(整合版)_第7张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第8张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第9张图片

对于上图的这个数组,如果独立两次求解,得到的最佳买入卖出点分别是【1,9】和【6,7】,最大收益是 (9-1)+(7-6)=9:

漫画:寻找股票买入卖出的最佳时机(整合版)_第10张图片

但实际上,如果选择【1,8】和【3,9】,最大收益是(8-1)+(9-3)=13>9:

漫画:寻找股票买入卖出的最佳时机(整合版)_第11张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第12张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第13张图片

当第1次最佳买入卖出点确定下来,第2次买入卖出点的位置会有哪几种情况呢?

情况1:第2次最佳买入卖出点,在第1次买入卖出点左侧

漫画:寻找股票买入卖出的最佳时机(整合版)_第14张图片

情况2:第2次最佳买入卖出点,在第1次买入卖出点右侧

漫画:寻找股票买入卖出的最佳时机(整合版)_第15张图片

情况3:第1次买入卖出区间从中间截断,重新拆分成两次买卖

漫画:寻找股票买入卖出的最佳时机(整合版)_第16张图片

那么,如何判断给定的股价数组属于那种情况呢?很简单,在第1次最大买入卖出点确定后,我们可以比较一下哪种情况带来的收益增量最大:

漫画:寻找股票买入卖出的最佳时机(整合版)_第17张图片

寻找左侧和右侧的最大涨幅比较好理解,寻找中间的最大跌幅有什么用呢?

细想一下就能知道,当第1次买卖需要被拆分开来的时候,买卖区间内的最大跌幅,就等同于拆分后的收益增量(类似于炒股的抄底操作):

漫画:寻找股票买入卖出的最佳时机(整合版)_第18张图片

这样一来,我们可以总结出下面的公式:

最大总收益 = 第1次最大收益 + Max(左侧最大涨幅,中间最大跌幅,右侧最大涨幅)

漫画:寻找股票买入卖出的最佳时机(整合版)_第19张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第20张图片

所谓动态规划,就是把复杂的问题简化成规模较小的子问题,再从简单的子问题自底向上一步一步递推,最终得到复杂问题的最优解。

首先,让我们分析一下当前这个股票买卖问题,这个问题要求解的是一定天数范围内、一定交易次数限制下的最大收益。

既然限制了股票最多买卖2次,那么股票的交易可以划分为5个阶段:

没有买卖

第1次买入

第1次卖出

第2次买入

第2次卖出

我们把股票的交易阶段设为变量m(用从0到4的数值表示),把天数范围设为变量n。而我们求解的最大收益,受这两个变量影响,用函数表示如下:

最大收益 = F(n,m)(n>=1,0<=m<=4)

既然函数和变量已经确定,接下来我们就要确定动态规划的两大要素:

1.问题的初始状态
2.问题的状态转移方程式

问题的初始状态是什么呢?我们假定交易天数的范围只限于第1天,也就是n=1的情况:

1.如果没有买卖,也就是m=0时,最大收益显然是0,也就是 F(1,0)= 0

2.如果有1次买入,也就是m=1时,相当于凭空减去了第1天的股价,最大收益是负的当天股价,也就是 F(1,1)= -price[0]

3.如果有1次买出,也就是m=2时,买卖抵消(当然,这没有实际意义),最大收益是0,也就是 F(1,2)= 0

4.如果有2次买入,也就是m=3时,同m=1的情况,F(1,3)= -price[0]

5.如果有2次卖出,也就是m=4时,同m=2的情况,F(1,4)= 0

确定了初始状态,我们再来看一看状态转移。假如天数范围限制从n-1天增加到n天,那么最大收益会有怎样的变化呢?

这取决于现在处于什么阶段(是第几次买入卖出),以及对第n天股价的操作(买入、卖出或观望)。让我们对各个阶段情况进行分析:

1.假如之前没有任何买卖,而第n天仍然观望,那么最大收益仍然是0,即 F(n,0) = 0

2.假如之前没有任何买卖,而第n天进行了买入,那么最大收益是负的当天股价,即 F(n,1)= -price[n-1]

3.假如之前有1次买入,而第n天选择观望,那么最大收益和之前一样,即 F(n,1)= F(n-1,1)

4.假如之前有1次买入,而第n天进行了卖出,那么最大收益是第1次买入的负收益加上当天股价,即那么 F(n,2)= F(n-1,1)+ price[n-1]

5.假如之前有1次卖出,而第n天选择观望,那么最大收益和之前一样,即 F(n,2)= F(n-1,2)

6.假如之前有1次卖出,而第n天进行2次买入,那么最大收益是第1次卖出收益减去当天股价,即F(n,3)= F(n-1,2) - price[n-1]

7.假如之前有2次买入,而第n天选择观望,那么最大收益和之前一样,即 F(n,3)= F(n-1,3)

8.假如之前有2次买入,而第n天进行了卖出,那么最大收益是第2次买入收益减去当天股价,即F(n,4)= F(n-1,3) + price[n-1]

9.假如之前有2次卖出,而第n天选择观望(也只能观望了),那么最大收益和之前一样,即 F(n,4)= F(n-1,4)

最后,我们把情况【2,3】,【4,5】,【6、7】,【8,9】合并,可以总结成下面的5个方程式:

F(n,0) = 0

F(n,1)=  max(-price[n-1],F(n-1,1))

F(n,2)=  max(F(n-1,1)+ price[n-1],F(n-1,2))

F(n,3)=  max(F(n-1,2)- price[n-1],F(n-1,3))

F(n,4)=  max(F(n-1,3)+ price[n-1],F(n-1,4))

从后面4个方程式中,可以总结出每一个阶段最大收益和上一个阶段的关系:

F(n,m) = max(F(n-1,m-1)+ price[n-1],F(n-1,m))

由此我们可以得出,完整的状态转移方程式如下:

漫画:寻找股票买入卖出的最佳时机(整合版)_第21张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第22张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第23张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第24张图片

在表格中,不同的行代表不同天数限制下的最大收益,不同的列代表不同买卖阶段的最大收益。

我们仍然利用之前例子当中的数组,以此为基础来填充表格:

首先,我们为表格填充初始状态:

漫画:寻找股票买入卖出的最佳时机(整合版)_第25张图片

接下来,我们开始填充第2行数据。

没有买卖时,最大收益一定为0,因此F(2,0)的结果是0:

根据之前的状态转移方程式,F(2,1)= max(F(1,0)-2,F(1,1))= max(-2,-1)= -1,所以第2行第2列的结果是-1:

漫画:寻找股票买入卖出的最佳时机(整合版)_第26张图片

F(2,2)= max(F(1,1)+2,F(1,2))= max(1,0)= 1,所以第2行第3列的结果是1:

漫画:寻找股票买入卖出的最佳时机(整合版)_第27张图片

F(2,3)= max(F(1,2)-2,F(1,3))= max(-2,-1)= -1,所以第2行第4列的结果是-1:

漫画:寻找股票买入卖出的最佳时机(整合版)_第28张图片

F(2,4)= max(F(1,3)+2,F(1,4))= max(1,0)= 1,所以第2行第5列的结果是1:

接下来我们继续根据状态转移方程式,填充第3行的数据:

漫画:寻找股票买入卖出的最佳时机(整合版)_第29张图片

接下来填充第4行:

漫画:寻找股票买入卖出的最佳时机(整合版)_第30张图片

以此类推,我们一直填充完整个表格:

如图所示,表格中最后一个数据13,就是全局的最大收益。

    //最大买卖次数
    private static int MAX_DEAL_TIMES = 2;

    public static int maxProfitFor2Time(int[] prices) {
        if(prices==null || prices.length==0) {
            return 0;
        }
        //表格的最大行数
        int n = prices.length;
        //表格的最大列数
        int m = MAX_DEAL_TIMES*2+1;
        //使用二维数组记录数据
        int[][] resultTable = new int[n][m];
        //填充初始状态
        resultTable[0][1] = -prices[0];
        resultTable[0][3] = -prices[0];
        //自底向上,填充数据
        for(int i=1;i

漫画:寻找股票买入卖出的最佳时机(整合版)_第31张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第32张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第33张图片

    //最大买卖次数
    private static int MAX_DEAL_TIMES = 2;

    public static int maxProfitFor2TimeV2(int[] prices) {
        if(prices==null || prices.length==0) {
            return 0;
        }
        //表格的最大行数
        int n = prices.length;
        //表格的最大列数
        int m = MAX_DEAL_TIMES*2+1;
        //使用一维数组记录数据
        int[] resultTable = new int[m];
        //填充初始状态
        resultTable[1] = -prices[0];
        resultTable[3] = -prices[0];
        //自底向上,填充数据
        for(int i=1;i

在这段代码中,resultTable从二维数组简化成了一维数组。由于最大买卖次数是常量,所以算法的空间复杂度也从O(n)降低到了O(1)。

漫画:寻找股票买入卖出的最佳时机(整合版)_第34张图片

漫画:寻找股票买入卖出的最佳时机(整合版)_第35张图片

    public static int maxProfitForKTime(int[] prices, int k) {
        if(prices==null || prices.length==0 || k<=0) {
            return 0;
        }
        //表格的最大行数
        int n = prices.length;
        //表格的最大列数
        int m = k*2+1;
        //使用一维数组记录数据
        int[] resultTable = new int[m];
        //填充初始状态
        for(int i=1;i

—————END—————

喜欢本文的朋友,欢迎关注公众号 程序员小灰,收看更多精彩内容

点个[在看],是对小灰最大的支持!

你可能感兴趣的:(算法,数据结构,java,比特币,动态规划)