前一段时间,小灰发布了上下两篇关于股票买卖的算法题讲解,激发了很多小伙伴的兴趣。
这一次,小灰把这两篇漫画整合在一起,并且修改了其中的一些细节错误,感谢小伙伴们的指正。
————— 第二天 —————
什么意思呢?让我们来举个例子,给定如下数组:
该数组对应的股票涨跌曲线如下:
显然,从第2天价格为1的时候买入,从第5天价格为8的时候卖出,可以获得最大收益:
此时的最大收益是 8-1=7。
在上面这个例子中,最大值9在最小值1的前面,我们又该怎么交易?总不能让时间倒流吧?
————————————
以下图为例,假如我们已经确定价格4的时候为卖出时间点,那么此时最佳的买入时间点是哪一个呢?
我们要选择价格4之前的区间,且必须是区间内最小值,显然,这个最佳的选择是价格2的时间点。
第1步,初始化操作,把数组的第1个元素当做临时的最小价格;最大收益的初始值是0:
第2步,遍历到第2个元素,由于2<9,所以当前的最小价格变成了2;此时没有必要计算差值的必要(因为前面的元素比它大),当前的最大收益仍然是0:
第3步,遍历到第3个元素,由于7>2,所以当前的最小价格仍然是2;如我们刚才所讲,假设价格7为卖出点,对应的最佳买入点是价格2,两者差值7-2=5,5>0,所以当前的最大收益变成了5:
第4步,遍历到第4个元素,由于4>2,所以当前的最小价格仍然是2;4-2=2,2<5,所以当前的最大收益仍然是5:
第5步,遍历到第5个元素,由于3>2,所以当前的最小价格仍然是2;3-2=1,1<5,所以当前的最大收益仍然是5:
以此类推,我们一直遍历到数组末尾,此时的最小价格是1;最大收益是8-1=7:
public class StockProfit {
public static int maxProfitFor1Time(int prices[]) {
if(prices==null || prices.length==0) {
return 0;
}
int minPrice = prices[0];
int maxProfit = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] < minPrice) {
minPrice = prices[i];
} else if(prices[i] - minPrice > maxProfit){
maxProfit = prices[i] - minPrice;
}
}
return maxProfit;
}
public static void main(String[] args) {
int[] prices = {9,2,7,4,3,1,8,4};
System.out.println(maxProfitFor1Time(prices));
}
}
我们以下图这个数组为例,直观地看一下买入卖出的时机:
在图中,绿色的线段代表价格上涨的阶段。既然买卖次数不限,那么我们完全可以在每一次低点都进行买入,在每一次高点都进行卖出。
这样一来,所有绿色的部分都是我们的收益,最大总收益就是这些局部收益的加总:
(6-1)+(8-3)+(4-2)+(7-4) = 15
至于如何判断出这些绿色上涨阶段呢?很简单,我们遍历整个数组,但凡后一个元素大于前一个元素,就代表股价处于上涨阶段。
public int maxProfitForAnyTime(int[] prices) {
int maxProfit = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i-1])
maxProfit += prices[i] - prices[i-1];
}
return maxProfit;
}
我们仍然以之前的数组为例:
首先,寻找到1次买卖限制下的最佳买入卖出点:
两次买卖的位置是不可能交叉的,所以我们找到第1次买卖位置后,把这一对买入卖出点以及它们中间的元素全部剔除掉:
接下来,我们按照同样的思路,再从剩下的元素中寻找第2次买卖的最佳买入卖出点:
这样一来,我们就找到了最多2次买卖情况下的最佳选择:
对于上图的这个数组,如果独立两次求解,得到的最佳买入卖出点分别是【1,9】和【6,7】,最大收益是 (9-1)+(7-6)=9:
但实际上,如果选择【1,8】和【3,9】,最大收益是(8-1)+(9-3)=13>9:
当第1次最佳买入卖出点确定下来,第2次买入卖出点的位置会有哪几种情况呢?
情况1:第2次最佳买入卖出点,在第1次买入卖出点左侧
情况2:第2次最佳买入卖出点,在第1次买入卖出点右侧
情况3:第1次买入卖出区间从中间截断,重新拆分成两次买卖
那么,如何判断给定的股价数组属于那种情况呢?很简单,在第1次最大买入卖出点确定后,我们可以比较一下哪种情况带来的收益增量最大:
寻找左侧和右侧的最大涨幅比较好理解,寻找中间的最大跌幅有什么用呢?
细想一下就能知道,当第1次买卖需要被拆分开来的时候,买卖区间内的最大跌幅,就等同于拆分后的收益增量(类似于炒股的抄底操作):
这样一来,我们可以总结出下面的公式:
最大总收益 = 第1次最大收益 + Max(左侧最大涨幅,中间最大跌幅,右侧最大涨幅)
所谓动态规划,就是把复杂的问题简化成规模较小的子问题,再从简单的子问题自底向上一步一步递推,最终得到复杂问题的最优解。
首先,让我们分析一下当前这个股票买卖问题,这个问题要求解的是一定天数范围内、一定交易次数限制下的最大收益。
既然限制了股票最多买卖2次,那么股票的交易可以划分为5个阶段:
没有买卖
第1次买入
第1次卖出
第2次买入
第2次卖出
我们把股票的交易阶段设为变量m(用从0到4的数值表示),把天数范围设为变量n。而我们求解的最大收益,受这两个变量影响,用函数表示如下:
最大收益 = F(n,m)(n>=1,0<=m<=4)
既然函数和变量已经确定,接下来我们就要确定动态规划的两大要素:
1.问题的初始状态
2.问题的状态转移方程式
问题的初始状态是什么呢?我们假定交易天数的范围只限于第1天,也就是n=1的情况:
1.如果没有买卖,也就是m=0时,最大收益显然是0,也就是 F(1,0)= 0
2.如果有1次买入,也就是m=1时,相当于凭空减去了第1天的股价,最大收益是负的当天股价,也就是 F(1,1)= -price[0]
3.如果有1次买出,也就是m=2时,买卖抵消(当然,这没有实际意义),最大收益是0,也就是 F(1,2)= 0
4.如果有2次买入,也就是m=3时,同m=1的情况,F(1,3)= -price[0]
5.如果有2次卖出,也就是m=4时,同m=2的情况,F(1,4)= 0
确定了初始状态,我们再来看一看状态转移。假如天数范围限制从n-1天增加到n天,那么最大收益会有怎样的变化呢?
这取决于现在处于什么阶段(是第几次买入卖出),以及对第n天股价的操作(买入、卖出或观望)。让我们对各个阶段情况进行分析:
1.假如之前没有任何买卖,而第n天仍然观望,那么最大收益仍然是0,即 F(n,0) = 0
2.假如之前没有任何买卖,而第n天进行了买入,那么最大收益是负的当天股价,即 F(n,1)= -price[n-1]
3.假如之前有1次买入,而第n天选择观望,那么最大收益和之前一样,即 F(n,1)= F(n-1,1)
4.假如之前有1次买入,而第n天进行了卖出,那么最大收益是第1次买入的负收益加上当天股价,即那么 F(n,2)= F(n-1,1)+ price[n-1]
5.假如之前有1次卖出,而第n天选择观望,那么最大收益和之前一样,即 F(n,2)= F(n-1,2)
6.假如之前有1次卖出,而第n天进行2次买入,那么最大收益是第1次卖出收益减去当天股价,即F(n,3)= F(n-1,2) - price[n-1]
7.假如之前有2次买入,而第n天选择观望,那么最大收益和之前一样,即 F(n,3)= F(n-1,3)
8.假如之前有2次买入,而第n天进行了卖出,那么最大收益是第2次买入收益减去当天股价,即F(n,4)= F(n-1,3) + price[n-1]
9.假如之前有2次卖出,而第n天选择观望(也只能观望了),那么最大收益和之前一样,即 F(n,4)= F(n-1,4)
最后,我们把情况【2,3】,【4,5】,【6、7】,【8,9】合并,可以总结成下面的5个方程式:
F(n,0) = 0
F(n,1)= max(-price[n-1],F(n-1,1))
F(n,2)= max(F(n-1,1)+ price[n-1],F(n-1,2))
F(n,3)= max(F(n-1,2)- price[n-1],F(n-1,3))
F(n,4)= max(F(n-1,3)+ price[n-1],F(n-1,4))
从后面4个方程式中,可以总结出每一个阶段最大收益和上一个阶段的关系:
F(n,m) = max(F(n-1,m-1)+ price[n-1],F(n-1,m))
由此我们可以得出,完整的状态转移方程式如下:
在表格中,不同的行代表不同天数限制下的最大收益,不同的列代表不同买卖阶段的最大收益。
我们仍然利用之前例子当中的数组,以此为基础来填充表格:
首先,我们为表格填充初始状态:
接下来,我们开始填充第2行数据。
没有买卖时,最大收益一定为0,因此F(2,0)的结果是0:
根据之前的状态转移方程式,F(2,1)= max(F(1,0)-2,F(1,1))= max(-2,-1)= -1,所以第2行第2列的结果是-1:
F(2,2)= max(F(1,1)+2,F(1,2))= max(1,0)= 1,所以第2行第3列的结果是1:
F(2,3)= max(F(1,2)-2,F(1,3))= max(-2,-1)= -1,所以第2行第4列的结果是-1:
F(2,4)= max(F(1,3)+2,F(1,4))= max(1,0)= 1,所以第2行第5列的结果是1:
接下来我们继续根据状态转移方程式,填充第3行的数据:
接下来填充第4行:
以此类推,我们一直填充完整个表格:
如图所示,表格中最后一个数据13,就是全局的最大收益。
//最大买卖次数
private static int MAX_DEAL_TIMES = 2;
public static int maxProfitFor2Time(int[] prices) {
if(prices==null || prices.length==0) {
return 0;
}
//表格的最大行数
int n = prices.length;
//表格的最大列数
int m = MAX_DEAL_TIMES*2+1;
//使用二维数组记录数据
int[][] resultTable = new int[n][m];
//填充初始状态
resultTable[0][1] = -prices[0];
resultTable[0][3] = -prices[0];
//自底向上,填充数据
for(int i=1;i
//最大买卖次数
private static int MAX_DEAL_TIMES = 2;
public static int maxProfitFor2TimeV2(int[] prices) {
if(prices==null || prices.length==0) {
return 0;
}
//表格的最大行数
int n = prices.length;
//表格的最大列数
int m = MAX_DEAL_TIMES*2+1;
//使用一维数组记录数据
int[] resultTable = new int[m];
//填充初始状态
resultTable[1] = -prices[0];
resultTable[3] = -prices[0];
//自底向上,填充数据
for(int i=1;i
在这段代码中,resultTable从二维数组简化成了一维数组。由于最大买卖次数是常量,所以算法的空间复杂度也从O(n)降低到了O(1)。
public static int maxProfitForKTime(int[] prices, int k) {
if(prices==null || prices.length==0 || k<=0) {
return 0;
}
//表格的最大行数
int n = prices.length;
//表格的最大列数
int m = k*2+1;
//使用一维数组记录数据
int[] resultTable = new int[m];
//填充初始状态
for(int i=1;i
—————END—————
喜欢本文的朋友,欢迎关注公众号 程序员小灰,收看更多精彩内容
点个[在看],是对小灰最大的支持!