类型声明语法:
let 变量: 类型;
let 变量:{
属性1:类型,
属性2:类型,
[propName: string]: any // 表示任意属性
}
let 变量: 类型 = 值;
function fn(参数: 类型, 参数: 类型): 类型{
...
}
```
自动类型判断
类型:
类型 | 例子 | 描述 |
---|---|---|
number | 1, -33, 2.5 | 任意数字 |
string | ‘hi’, “hi”, hi |
任意字符串 |
boolean | true、false | 布尔值true或false |
字面量 | 其本身 | 限制变量的值就是该字面量的值 |
any | * | 任意类型 |
unknown | * | 类型安全的any |
void | 空值(undefined) | 没有值(或undefined) |
never | 没有值 | 不能是任何值 |
object | {name:‘孙悟空’} | 任意的JS对象 |
array | [1,2,3] | 任意JS数组 |
tuple | [4,5] | 元素,TS新增类型,固定长度数组 |
enum | enum{A, B} | 枚举,TS中新增类型 |
几个比较特殊的类型示例:
never 一般用在报错
function error(message: string): never {
throw new Error(message);
}
tuple 元组
let x: [string, number];
x = ["hello", 10];
enum 枚举
enum Color { // 默认0开始 0,1,2
Red,
Green,
Blue,
}
let c: Color = Color.Green;
enum Color { // 此时从1开始 1,2,3
Red = 1,
Green,
Blue,
}
let c: Color = Color.Green;
enum Color { //自定义 此时为 1,2,4
Red = 1,
Green = 2,
Blue = 4,
}
let c: Color = Color.Green;
类型断言
有些情况下,变量的类型对于我们来说是很明确,但是TS编译器却并不清楚,此时,可以通过类型断言来告诉编译器变量的类型,断言有两种形式:
第一种
let someValue: unknown = "this is a string";
let strLength: number = (someValue as string).length;
第二种
let someValue: unknown = "this is a string";
let strLength: number = (<string>someValue).length;
定义类:
class 类名 {
属性名: 类型;
constructor(参数: 类型){
this.属性名 = 参数;
}
方法名(){
....
}
}
示例:
class Person{
name: string;
age: number;
constructor(name: string, age: number){
this.name = name;
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
使用类:
const p = new Person('孙悟空', 18);
p.sayHello();
对象实质上就是属性和方法的容器,它的主要作用就是存储属性和方法,这就是所谓的封装
默认情况下,对象的属性是可以任意的修改的,为了确保数据的安全性,在TS中可以对属性的权限进行设置
public(默认值),可以在类、子类和对象中修改
protected ,可以在类、子类中修改
private ,可以在类中修改
public
class Person{
public name: string; // 写或什么都不写都是public
public age: number;
constructor(name: string, age: number){
this.name = name; // 可以在类中修改
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
class Employee extends Person{
constructor(name: string, age: number){
super(name, age);
this.name = name; //子类中可以修改
}
}
const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 可以通过对象修改
protected
class Person{
protected name: string;
protected age: number;
constructor(name: string, age: number){
this.name = name; // 可以修改
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
class Employee extends Person{
constructor(name: string, age: number){
super(name, age);
this.name = name; //子类中可以修改
}
}
const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 不能修改
private
class Person{
private name: string;
private age: number;
constructor(name: string, age: number){
this.name = name; // 可以修改
this.age = age;
}
sayHello(){
console.log(`大家好,我是${this.name}`);
}
}
class Employee extends Person{
constructor(name: string, age: number){
super(name, age);
this.name = name; //子类中不能修改
}
}
const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 不能修改
对于一些不希望被任意修改的属性,可以将其设置为private
直接将其设置为private将导致无法再通过对象修改其中的属性
我们可以在类中定义一组读取、设置属性的方法,这种对属性读取或设置的属性被称为属性的存取器
读取属性的方法叫做setter方法,设置属性的方法叫做getter方法
示例:
class Person{
private _name: string;
constructor(name: string){
this._name = name;
}
get name(){
return this._name;
}
set name(name: string){
this._name = name;
}
}
const p1 = new Person('孙悟空');
console.log(p1.name); // 通过getter读取name属性
p1.name = '猪八戒'; // 通过setter修改name属性
静态属性(方法),也称为类属性。使用静态属性无需创建实例,通过类即可直接使用
静态属性(方法)使用static开头
示例:
class Tools{
static PI = 3.1415926;
static sum(num1: number, num2: number){
return num1 + num2
}
}
console.log(Tools.PI);
console.log(Tools.sum(123, 456));
继承时面向对象中的又一个特性
通过继承可以将其他类中的属性和方法引入到当前类中
示例:
class Animal{
name: string;
age: number;
constructor(name: string, age: number){
this.name = name;
this.age = age;
}
}
class Dog extends Animal{
bark(){
console.log(`${this.name}在汪汪叫!`);
}
}
const dog = new Dog('旺财', 4);
dog.bark();
通过继承可以在不修改类的情况下完成对类的扩展
重写
发生继承时,如果子类中的方法会替换掉父类中的同名方法,这就称为方法的重写
示例:
class Animal{
name: string;
age: number;
constructor(name: string, age: number){
this.name = name;
this.age = age;
}
run(){
console.log(`父类中的run方法!`);
}
}
class Dog extends Animal{
bark(){
console.log(`${this.name}在汪汪叫!`);
}
run(){
console.log(`子类中的run方法,会重写父类中的run方法!`);
}
}
const dog = new Dog('旺财', 4);
dog.bark();
在子类中可以使用super来完成对父类的引用
抽象类是专门用来被其他类所继承的类,它只能被其他类所继承不能用来创建实例
abstract class Animal{
abstract run(): void;
bark(){
console.log('动物在叫~');
}
}
class Dog extends Animals{
run(){
console.log('狗在跑~');
}
}
接口的作用类似于抽象类,不同点在于接口中的所有方法和属性都是没有实值的,换句话说接口中的所有方法都是抽象方法。接口主要负责定义一个类的结构,接口可以去限制一个对象的接口,对象只有包含接口中定义的所有属性和方法时才能匹配接口。同时,可以让一个类去实现接口,实现接口时类中要保护接口中的所有属性。
示例(检查对象类型):
interface Person{
name: string;
sayHello():void;
}
function fn(per: Person){
per.sayHello();
}
fn({name:'孙悟空', sayHello() {console.log(`Hello, 我是 ${this.name}`)}});
示例(实现)
interface Person{
name: string;
sayHello():void;
}
class Student implements Person{
constructor(public name: string) {
}
sayHello() {
console.log('大家好,我是'+this.name);
}
}
定义一个函数或类时,有些情况下无法确定其中要使用的具体类型(返回值、参数、属性的类型不能确定),此时泛型便能够发挥作用。
举个例子:
function test(arg: any): any{
return arg;
}
上例中,test函数有一个参数类型不确定,但是能确定的时其返回值的类型和参数的类型是相同的,由于类型不确定所以参数和返回值均使用了any,但是很明显这样做是不合适的,首先使用any会关闭TS的类型检查,其次这样设置也不能体现出参数和返回值是相同的类型
使用泛型:
function test<T>(arg: T): T{
return arg;
}
这里的
就是泛型,T是我们给这个类型起的名字(不一定非叫T),设置泛型后即可在函数中使用T来表示该类型。所以泛型其实很好理解,就表示某个类型。
那么如何使用上边的函数呢?
方式一(直接使用):
test(10)
方式二(指定类型):
test<number>(10)
可以同时指定多个泛型,泛型间使用逗号隔开:
function test<T, K>(a: T, b: K): K{
return b;
}
test<number, string>(10, "hello");
类中同样可以使用泛型:
class MyClass<T>{
prop: T;
constructor(prop: T){
this.prop = prop;
}
}
除此之外,也可以对泛型的范围进行约束
interface MyInter{
length: number;
}
function test<T extends MyInter>(arg: T): number{
return arg.length;
}