如何利用clusterProfiler进行基因集的KEGG富集分析?

NGS 测序项目,不管是基因组测序,还是转录组测序,通常会得到一个基因列表,记录了基因突变,或者高/低表达量。

对成百上千甚至上万个基因进行解读,往往是困难的,对基因进行分组以帮助对数据的理解就非常有必要。KEGG 富集分析就是一种非常流行的对基因集进行分组的方法。

安装

BiocManager::install("clusterProfiler")
BiocManager::install("org.Hs.eg.db")
  • clusterProfiler,功能强大的用于富集分析的 R 包

  • org.Hs.eg.db,用于转换各种基因 ID 的 R 包

加载

suppressMessages(library(clusterProfiler))
suppressMessages(library(org.Hs.eg.db))

数据

假定经过上游分析,得到了如下的基因列表:

x <- c("GPX3",  "GLRX",   "LBP",   "CRYAB", "DEFB1", "HCLS1",   "SOD2",   "HSPA2",
       "ORM1",  "IGFBP1", "PTHLH", "GPC3",  "IGFBP3","TOB1",    "MITF",   "NDRG1",
       "NR1H4", "FGFR3",  "PVR",   "IL6",   "PTPRM", "ERBB2",   "NID2",   "LAMB1",
       "COMP",  "PLS3",   "MCAM",  "SPP1",  "LAMC1", "COL4A2",  "COL4A1", "MYOC",
       "ANXA4", "TFPI2",  "CST6",  "SLPI",  "TIMP2", "CPM",     "GGT1",   "NNMT",
       "MAL",   "EEF1A2", "HGD",   "TCN2",  "CDA",   "PCCA",    "CRYM",   "PDXK",
       "STC1",  "WARS",  "HMOX1", "FXYD2", "RBP4",   "SLC6A12", "KDELR3", "ITM2B")

转换

因为 KEGG 富集分析用到的函数enrichKEGG需要的基因列表必须是 Entrez Gene ID,所以需要先将基因名称转换一下:

trans = bitr(x, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = "org.Hs.eg.db")
## 'select()' returned 1:1 mapping between keys and columns
## Warning in bitr(x, fromType = "SYMBOL", toType = "ENTREZID", OrgDb =
## "org.Hs.eg.db"): 1.79% of input gene IDs are fail to map...

看到警告,提醒有一部分基因 ID 没有转换成功,不管它。

富集

kk <- enrichKEGG(gene         = trans$ENTREZID,
                 organism     = 'hsa',
                 pvalueCutoff = 0.05)
## Reading KEGG annotation online:
##
## Reading KEGG annotation online:

画图

点图:

dotplot(kk, showCategory = 10)
如何利用clusterProfiler进行基因集的KEGG富集分析?_第1张图片

条形图:

barplot(kk, showCategory = 10)
如何利用clusterProfiler进行基因集的KEGG富集分析?_第2张图片

基因 ID 转换为基因名

查看 KEGG 富集分析的前几条记录:

head(kk)
##                ID                Description GeneRatio  BgRatio       pvalue
## hsa04512 hsa04512   ECM-receptor interaction      6/36  88/8159 1.991210e-06
## hsa04151 hsa04151 PI3K-Akt signaling pathway      9/36 354/8159 1.636401e-05
## hsa04510 hsa04510             Focal adhesion      7/36 201/8159 2.257391e-05
## hsa05146 hsa05146                 Amoebiasis      5/36 102/8159 7.668538e-05
## hsa05222 hsa05222     Small cell lung cancer      4/36  92/8159 6.767016e-04
## hsa05134 hsa05134              Legionellosis      3/36  57/8159 1.960214e-03
##              p.adjust       qvalue                                       geneID
## hsa04512 0.0002867343 0.0002536173                3912/1311/6696/3915/1284/1282
## hsa04151 0.0010835477 0.0009584011 2261/3569/2064/3912/1311/6696/3915/1284/1282
## hsa04510 0.0010835477 0.0009584011           2064/3912/1311/6696/3915/1284/1282
## hsa05146 0.0027606736 0.0024418238                     3569/3912/3915/1284/1282
## hsa05222 0.0194890068 0.0172380835                          3912/3915/1284/1282
## hsa05134 0.0470451438 0.0416115673                               3306/3569/1917
##          Count
## hsa04512     6
## hsa04151     9
## hsa04510     7
## hsa05146     5
## hsa05222     4
## hsa05134     3

可以看到,geneID 一列是一些斜线隔开的数字,即 Entrez Gene ID,将其转换成基因名更方便人类阅读。

z = setReadable(kk, OrgDb = org.Hs.eg.db, keyType="ENTREZID")
head(z@result)
##                ID                Description GeneRatio  BgRatio       pvalue
## hsa04512 hsa04512   ECM-receptor interaction      6/36  88/8159 1.991210e-06
## hsa04151 hsa04151 PI3K-Akt signaling pathway      9/36 354/8159 1.636401e-05
## hsa04510 hsa04510             Focal adhesion      7/36 201/8159 2.257391e-05
## hsa05146 hsa05146                 Amoebiasis      5/36 102/8159 7.668538e-05
## hsa05222 hsa05222     Small cell lung cancer      4/36  92/8159 6.767016e-04
## hsa05134 hsa05134              Legionellosis      3/36  57/8159 1.960214e-03
##              p.adjust       qvalue
## hsa04512 0.0002867343 0.0002536173
## hsa04151 0.0010835477 0.0009584011
## hsa04510 0.0010835477 0.0009584011
## hsa05146 0.0027606736 0.0024418238
## hsa05222 0.0194890068 0.0172380835
## hsa05134 0.0470451438 0.0416115673
##                                                       geneID Count
## hsa04512                 LAMB1/COMP/SPP1/LAMC1/COL4A2/COL4A1     6
## hsa04151 FGFR3/IL6/ERBB2/LAMB1/COMP/SPP1/LAMC1/COL4A2/COL4A1     9
## hsa04510           ERBB2/LAMB1/COMP/SPP1/LAMC1/COL4A2/COL4A1     7
## hsa05146                       IL6/LAMB1/LAMC1/COL4A2/COL4A1     5
## hsa05222                           LAMB1/LAMC1/COL4A2/COL4A1     4
## hsa05134                                    HSPA2/IL6/EEF1A2     3

至此,我们完成了一个基本的 KEGG 富集分析过程。

参考

[1] clusterProfiler 官网教程:https://yulab-smu.top/biomedical-knowledge-mining-book/clusterprofiler-kegg.html

粉丝福利

学生信,计算机基础一定要好。毫不夸张地说,计算机基础决定了你能否入门,而生物学修养决定你能走多远。没有出发,如何走得远?

  • 从零开始学生信交流群,免费咨询,量身定制学习计划

你可能感兴趣的:(大数据,人工智能,java,编程语言,数据分析)