核—幂零分解

若向量空间 V \mathcal V V存在子空间 X \mathcal X X Y \mathcal Y Y,当
X + Y = V X ∩ Y = 0 \mathcal {X\text{+}Y\text{=}V}\\ \mathcal {X}\cap \mathcal {Y}=0 X+Y=VXY=0
时称子空间 X \mathcal X X Y \mathcal Y Y是完备的,其中记为 X ⊕ Y = V \mathcal X \oplus \mathcal Y = \mathcal V XY=V

若存在 X ⊕ Y = V \mathcal X \oplus \mathcal Y = \mathcal V XY=V, 对于 x ∈ X , y ∈ Y , v ∈ V x\in \mathcal X,y \in \mathcal Y,v \in \mathcal V xX,yY,vV,满足 v = x + y v=x+y v=x+y,则向量 x x x被称为向量 v v v沿着 Y \mathcal Y Y X \mathcal X X 空间的投影,向量 y y y被称为向量 v v v沿着 X \mathcal X X Y \mathcal Y Y 空间的投影,若存在 P v = x Pv=x Pv=x P P P被称为沿着 Y \mathcal Y Y X \mathcal X X 空间的投影算子,其中

  • P 2 = P P^2=P P2=P
  • 1 − P 1-P 1P沿着 X \mathcal X X Y \mathcal Y Y 空间的投影算子
  • R ( P ) = N ( 1 − P ) = X R(P)=N(1-P)=\mathcal X R(P)=N(1P)=X
  • N ( P ) = R ( 1 − P ) = Y N(P)=R(1-P)=\mathcal Y N(P)=R(1P)=Y

V = R n V=\mathfrak R^n V=Rn,则 P [ X ∣ Y ] = [ X ∣ 0 ] P[\mathbf X|\mathbf Y]=[\mathbf X|\mathbf 0] P[XY]=[X0],即 P = [ X ∣ 0 ] [ X ∣ Y ] − 1 = [ X ∣ 0 ] ( I 0 0 0 ) [ X ∣ Y ] − 1 P=[\mathbf X|\mathbf 0][\mathbf X|\mathbf Y]^{-1}=[\mathbf X|\mathbf 0]\begin{pmatrix}\mathbf I&\mathbf0\\\mathbf 0&\mathbf 0\end{pmatrix}[\mathbf X|\mathbf Y]^{-1} P=[X0][XY]1=[X0](I000)[XY]1,其中 X , Y \mathbf X,\mathbf Y X,Y分别表示 X , Y \mathcal X ,\mathcal Y X,Y的一组基

值域零空间分解

若存在一个k,满足 rank ( A k ) = rank ( A k + 1 ) \text{rank}(A^k)=\text{rank}(A^{k+1}) rank(Ak)=rank(Ak+1),则将最小的那个k值称为index,其中非奇异矩阵的index为0

对于奇异矩阵 A n × n A_{n\times n} An×n,存在一个index k,使得$R(A^k)\oplus N(A^k)=\mathfrak R^n $

若存在一个矩阵 A k = 0 A^k=0 Ak=0,其中index(A)=0,则矩阵A被称为幂零矩阵

核—幂零分解

如果A是一个 n × n n\times n n×n 的index为k的奇异矩阵,其中 rank ( A k ) = r \text{rank}(A^k)=r rank(Ak)=r,则存在一个非奇异矩阵 Q Q Q, 满足
Q − 1 A Q = ( C r × r 0 0 N ) \left.\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}=\left(\begin{array}{cc}\mathbf{C}_{r\times r}&\mathbf{0}\\\mathbf{0}&\mathbf{N}\end{array}\right.\right) Q1AQ=(Cr×r00N)
其中 C C C是非奇异矩阵, N N N是index为k的幂零矩阵,其中 Q Q Q为矩阵 A k A^k Ak的值域空间和零空间的基的组合

若存在 A = Q ( C 0 0 N ) Q − 1 \left.\mathbf{A}=\mathbf{Q}\left(\begin{array}{ll}\mathbf{C}&0\\0&\mathbf{N}\end{array}\right.\right)\mathbf{Q}^{-1} A=Q(C00N)Q1,则 A D = Q ( C − 1 0 0 0 ) Q − 1 \left.\mathbf{A}^D=\mathbf{Q}\left(\begin{array}{ll}\mathbf{C}^{-1}&0\\0&0\end{array}\right.\right)\mathbf{Q}^{-1} AD=Q(C1000)Q1,其中 A D A^D AD被称为A的广义逆

对于矩阵 A = ( − 2 0 − 4 4 2 4 3 2 2 ) \left.\textbf{A}=\left(\begin{array}{rrr}-2&0&-4\\4&2&4\\3&2&2\end{array}\right.\right) A= 243022442 ,计算出 core-nilpoten 的分解形式,并给出对应的 Drazin 逆的形式。

直接计算可得 :   r a n k ( A ) = 2 ,   r a n k ( A 2 ) = 1 ,   r a n k ( A 3 ) = 1 :\:rank(\mathbf{A})=2,\:rank(\mathbf{A^2})=1,\:rank(\mathbf{A^3})=1 :rank(A)=2,rank(A2)=1,rank(A3)=1, 由此可知 : i n d e x ( A ) = 2. :index(\mathbf{A})=2. :index(A)=2. 由 core-nilpotent 分解可知,矩阵 Q = [ X ∣ Y ] \mathbf{Q}=[\mathbf{X}|\mathbf{Y}] Q=[XY], 这里 X \mathbf{X} X 和 Y 分别为 R ( A 2 ) R(\mathbf{A}^2) R(A2) N ( A 2 ) N(\mathbf{A}^2) N(A2) 的一组基。从而直接计算可得,
X = ( − 8 12 8 ) , Y = ( − 1 0 1 0 0 1 ) , \left.\mathbf{X}=\left(\begin{array}{rr}-8\\12\\8\end{array}\right.\right),\quad\mathbf{Y}=\left(\begin{array}{rr}-1&0\\1&0\\0&1\end{array}\right), X= 8128 ,Y= 110001 ,
可得
Q = ( − 8 − 1 0 12 1 0 8 0 1 ) \left.\mathbf{Q}=\left(\begin{array}{rrr}-8&-1&0\\12&1&0\\8&0&1\end{array}\right.\right) Q= 8128110001
所以
Q − 1 A Q = ( 1 4 1 4 0 − 3 − 2 0 − 2 − 2 1 ) ( − 2 0 − 4 4 2 4 3 2 2 ) ( − 8 − 1 0 12 1 0 8 0 1 ) = ( 2 0 0 0 − 2 4 0 − 1 2 ) \left.\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}=\left(\begin{array}{rrr}\frac{1}{4}&\frac{1}{4}&0\\-3&-2&0\\-2&-2&1\end{array}\right.\right)\left(\begin{array}{rrr}-2&0&-4\\4&2&4\\3&2&2\end{array}\right)\left(\begin{array}{rrrr}-8&-1&0\\12&1&0\\8&0&1\end{array}\right)=\left(\begin{array}{rrr}2&0&0\\0&-2&4\\0&-1&2\end{array}\right) Q1AQ= 41324122001 243022442 8128110001 = 200021042
因为 Q − 1 A Q = ( C 0 0 N ) , C = ( 2 ) , N = ( − 2 4 − 1 2 ) \left.\mathbf{Q}^{-1}\mathbf{AQ}=\left(\begin{array}{ll}\mathbf{C}&\mathbf{0}\\\mathbf{0}&\mathbf{N}\end{array}\right.\right),\left.\mathbf{C}=(2),\mathbf{N}=\left(\begin{array}{cc}-2&4\\-1&2\end{array}\right.\right) Q1AQ=(C00N),C=(2),N=(2142)

所以

你可能感兴趣的:(矩阵论,矩阵)