【MATLAB】史上最全的7种回归预测算法全家桶

有意向获取代码,请转文末观看代码获取方式~

大家吃一顿火锅的价格便可以拥有9种时序预测算法,绝对不亏,知识付费是现今时代的趋势,而且都是我精心制作的教程,有问题可随时反馈~也可单独获取某一算法的代码(见每一算法介绍后文)~

1 【MATLAB】BP神经网络回归预测算法

BP 神经网络是一种常见的人工神经网络,也是一种有监督学习的神经网络。其全称为“Back Propagation”,即反向传播算法。BP 神经网络主要由输入层、隐藏层和输出层组成,每一层都由多个神经元组成。BP 神经网络的学习过程是通过不断地调整权值和偏置值来逐步提高网络的精度。 BP 神经网络的训练过程可以分为两个阶段:前向传播和反向传播。在前向传播中,输入信号通过各层的神经元,最终产生输出结果。在反向传播中,输出结果与预期结果的误差被反向传播回网络中,根据误差大小调整各层神经元的权值和偏置值,使得误差逐步减小,从而提高网络的精度。BP 神经网络的优点是可以处理非线性问题,可以进行并行计算,并且能够自适应地学习和调整权值和偏置值。

算法示意图

【MATLAB】史上最全的7种回归预测算法全家桶_第1张图片

【MATLAB】史上最全的7种回归预测算法全家桶_第2张图片

2【MATLAB】SVM支持向量机回归预测算法

SVM(Support Vector Machine)即支持向量机,是一种常见的机器学习算法,被广泛应用于分类和回归问题中。它的主要思想是将训练数据映射到高维空间中,然后在该空间中找到一个最优的超平面来分隔不同类别的样本。SVM 的目标是找到一个最大间隔超平面,即具有最大边际(Margin)的超平面,以保证分类的鲁棒性和泛化能力。在 SVM 中,支持向量是指距离超平面最近的一些样本点,它们对于寻找最大边际超平面起着非常重要的作用。SVM 通过对支持向量进行优化来确定最优的超平面,使得它们到超平面的距离最小化。 SVM 在分类问题中的应用非常广泛,尤其在处理高维数据和小样本数据时表现出色。SVM 还可以通过核函数来处理非线性分类问题,将数据映射到高维空间中进行分类。SVM 在模型选择、参数调节和解决多分类问题等方面也有许多研究成果。

算法示意图

【MATLAB】史上最全的7种回归预测算法全家桶_第3张图片

【MATLAB】史上最全的7种回归预测算法全家桶_第4张图片

3【MATLAB】LSTM长短期记忆神经网络回归预测算法

LSTM(Long Short-Term Memory)是一种常用的循环神经网络(Recurrent Neural Network,RNN)结构,由于其对于长序列数据的处理能力,被广泛应用于语音识别、自然语言处理、图像处理等领域。 LSTM 网络的主要特点是增加了一个称为“记忆单元(Memory Cell)”的结构,用于控制网络的信息流动。这个结构可以记忆信息并在需要的时候将其加入到当前的处理中,从而更好地处理长序列数据。另外,LSTM 网络还引入了三个称为“门(Gates)”的结构,包括输入门(Input Gate)、遗忘门(Forget Gate)和输出门(Output Gate),用于控制信息的输入、遗忘和输出。这些门的作用是通过一个 sigmoid 函数将输入信息映射到 0~1 之间的值,然后与记忆单元中的信息进行运算,控制信息的流动。通过这种方式,LSTM 网络可以有效的捕捉序列中的长期依赖关系,从而提高了神经网络处理序列数据的能力。

算法示意图

【MATLAB】史上最全的7种回归预测算法全家桶_第5张图片

【MATLAB】史上最全的7种回归预测算法全家桶_第6张图片

4【MATLAB】RBF径向基神经网络回归预测算法

RBF 神经网络(Radial Basis Function Neural Network)是一种基于径向基函数的前向型神经网络。它的特点是具有快速的训练速度和良好的泛化性能。 RBF 神经网络的基本结构包括输入层、隐藏层和输出层。其中隐藏层是 RBF 层,它的神经元使用径向基函数来计算输入向量与每个神经元之间的距离,用这个距离值来作为神经元的激活函数。常用的径向基函数包括高斯函数、多项式函数等。 RBF 神经网络常用于分类和回归问题的解决,它的训练过程通常采用无监督学习算法,如 K 均值聚类算法,来对 RBF 层的中心进行初始化,然后再用监督学习算法,如误差反向传播算法,来调整网络的权值。 RBF 神经网络的优点在于它的泛化能力强、训练速度快、易于实现和调整等。但是它也存在一些缺点,如对参数的选择敏感、容易出现过拟合等。

算法示意图

【MATLAB】史上最全的7种回归预测算法全家桶_第7张图片

【MATLAB】史上最全的7种回归预测算法全家桶_第8张图片

5【MATLAB】RF随机森林回归预测算法

随机森林的基本思想是利用多个决策树对时序数据进行预测,其中每个决策树都使用不同的随机抽样方式选择训练数据,以减小过拟合的风险。 随机森林时序预测算法的主要步骤如下:

  1. 样本抽样:从原始数据中随机抽取一部分样本,用于训练每个决策树。

  2. 特征抽样:从原始特征中随机选取一部分特征,用于训练每个决策树。

  3. 决策树训练:使用抽样得到的样本和特征,构建多个决策树,其中每个树都是一组独立的分类器。

  4. 预测:对于新的输入数据,使用构建的决策树进行预测,最终输出每个决策树的预测值的平均值,作为最终的预测值。 随机森林时序预测算法具有以下优点:

  5. 可以处理大规模、高维度的数据。

  6. 具有较高的准确性和稳定性,在处理噪声和缺失值方面表现良好。

  7. 可以有效地处理非线性数据和复杂模型。

  8. 可以进行特征选择,从而提高模型的泛化能力。总之,随机森林时序预测算法是一种有效的时间序列预测方法,可以用于各种领域,如金融、医疗、气象等,具有广泛的应用前景。

算法示意图

【MATLAB】史上最全的7种回归预测算法全家桶_第9张图片

【MATLAB】史上最全的7种回归预测算法全家桶_第10张图片

【MATLAB】史上最全的7种回归预测算法全家桶_第11张图片

【MATLAB】史上最全的7种回归预测算法全家桶_第12张图片

6【MATLAB】BiLSTM双向长短时记忆神经网络回归预测算法

BiLSTM (Bidirectional Long Short - Term Memory Networks,双向长短期记忆神经网络) 是一种常用的深度学习模型,在自然语言处理和时间序列分析等领域中广泛应用。它是 LSTM 的一种变种,通过引入双向结构,增强了模型对上下文信息的感知能力。 BiLSTM 模型由两个 LSTM 层组成,一个从前往后读取输入序列,另一个从后往前读取输入序列。这两个 LSTM 层的输出经过拼接后,再送入后续的全连接层进行分类或预测。BiLSTM 的主要优点是能够同时考虑过去和未来的信息,从而更好地捕捉输入序列中的长期依赖关系。 BiLSTM 模型的核心是 LSTM 单元,它包含输入门、遗忘门和输出门三个门控机制,以及一个细胞状态。输入门控制输入信息的流动,遗忘门控制细胞状态的更新,输出门控制细胞状态和输出的流动。通过这些门控机制,LSTM 单元能够有效地处理长序列数据,并避免梯度消失或梯度爆炸的问题。 BiLSTM 在自然语言处理领域中应用广泛,如命名实体识别、情感分析、机器翻译等任务。它能够有效地处理句子中的语义和语法信息,并对上下文信息进行建模。同时,BiLSTM 还可以与其他模型结合使用,如卷积神经网络 (CNN) 和注意力机制 (Attention Mechanism),从而进一步提高模型的精度和鲁棒性。总之,BiLSTM 是一种强大的深度学习模型,具有较强的建模能力和广泛的应用前景,是自然语言处理和时间序列分析等领域中的重要技术。

算法示意图

【MATLAB】史上最全的7种回归预测算法全家桶_第13张图片

【MATLAB】史上最全的7种回归预测算法全家桶_第14张图片

7【MATLAB】CNN卷积神经网络回归预测算法

CNN(Convolutional Neural Network,卷积神经网络)是一种前馈神经网络,主要用于处理具有类似网格结构的数据,例如图像和音频。CNN 的主要特点是卷积层和池化层的交替使用来提取数据特征,以及使用全连接层对这些特征进行分类和识别。 CNN 的主要结构包括卷积层、池化层和全连接层。其中卷积层主要用于提取数据中的特征,它通过将一个小的卷积核在数据上滑动,将局部特征提取出来。池化层则用于降低数据的维度,减少特征数量,从而简化模型的复杂度。全连接层则用于将提取的特征映射到具体的分类或识别结果上。 CNN 在图像识别、语音识别、自然语言处理等领域中,都取得了非常好的效果。相比于传统的机器学习算法,CNN 不需要手动提取特征,而是通过学习数据中的特征,从而更好地解决了复杂模式识别问题。同时,CNN 的参数共享和权值共享机制,使得模型的训练速度更快,且对于数据的变换和噪声具有较强的鲁棒性。总之,CNN 是一种重要的深度学习算法,它在图像、语音、自然语言等领域中具有广泛的应用,是目前最先进的图像识别算法之一。

算法示意图

【MATLAB】史上最全的7种回归预测算法全家桶_第15张图片

【MATLAB】史上最全的7种回归预测算法全家桶_第16张图片


【MATLAB 】LSTM长短时记忆神经网络回归预测

你可能感兴趣的:(MATLAB,回归预测算法,算法,matlab,回归)