DMA covert communication

DMA隐蔽通信的新思路

拆分DMA的RF链

思路的主要来源:
@article{Ci2021HybridBD,
title={Hybrid Beamforming Design for Covert Multicast mmWave Massive MIMO Communications},
author={Wei Ci and Chenhao Qi and Geoffrey Ye Li and Shiwen Mao},
journal={2021 IEEE Global Communications Conference (GLOBECOM)},
year={2021},
volume={},
pages={}
}

DMA covert communication_第1张图片
DMA covert communication_第2张图片
文章的仿真图,注意这篇文章是多用户的,纵轴是最小隐蔽速率, 横轴是最大干扰功率和PcMAX是?
Multiuser Covert Communication 多合法用户隐蔽通信?
思考: DMA可以用于远场吗?DMA用于远场的模型

下一步是首先看看多用户的隐蔽,然后看看能不能把这个文章复现出来.

r ( p i ) = a i H s + n i , i = b j  or  w , ∀ j = 1 , 2... K \begin{align} r\left(\mathbf{p}_{i}\right)=\mathbf{a}_{i}^{H} \mathbf{s}+n_{i}, \quad i=b_j \text { or } w, \forall j = 1,2 ...K \end{align} r(pi)=aiHs+ni,i=bj or w,j=1,2...K

The digital input to the DMA is given by w = [ P c w b T x b , P J w w T x w ] T ∈ C N d × 1 \mathbf{w}= \left[ \sqrt{P_c}\mathbf{w}_{b}^T x_{b} , \sqrt{P_J}\mathbf{w}_{w}^T x_{w} \right]^T \in \mathbb{C}^{N_{d} \times 1 } w=[Pc wbTxb,PJ wwTxw]TCNd×1 , and thus by (1) the channel input is

s = H Q w \mathbf{s} = \mathbf{H Q} \mathbf{w} s=HQw

s ∈ N d N e × 1 \mathbf{s} \in N_d N_e \times1 sNdNe×1

r ( p i ) = a i H H Q w + n i , i = b  or  w \begin{align} r\left(\mathbf{p}_{i}\right)=\mathbf{a}_{i}^{H} \mathbf{H Q} \mathbf{w} +n_{i}, \quad i=b \text { or } w \end{align} r(pi)=aiHHQw+ni,i=b or w

H = [ H b 0 0 H w ] \begin{align} \boldsymbol{H}=\left[\begin{array}{cc} \boldsymbol{H}_{b} & 0 \\ 0 & \boldsymbol{H}_{w} \end{array}\right] \end{align} H=[Hb00Hw]

H ∈ C N d N e × N d N e \mathbf{H} \in \mathbb{C}^{N_d N_e \times N_d N_e} HCNdNe×NdNe
H b ∈ C N d c N e × N d c N e \mathbf{H}_b \in \mathbb{C}^{N_{dc} N_e \times N_{dc} N_e} HbCNdcNe×NdcNe
H w ∈ C N d j N e × N d j N e \mathbf{H}_w \in \mathbb{C}^{N_{dj} N_e \times N_{dj} N_e} HwCNdjNe×NdjNe

Q = [ Q b 0 0 Q w ] \begin{align} \boldsymbol{Q}=\left[\begin{array}{cc} \boldsymbol{Q}_{b} & 0 \\ 0 & \boldsymbol{Q}_{w} \end{array}\right] \end{align} Q=[Qb00Qw]

Q ∈ C N d N e × N d \mathbf{Q} \in \mathbb{C}^{N_d N_e \times N_d } QCNdNe×Nd 不涉及发射功率分量
Q b ∈ C N d c N e × N d c \mathbf{Q}_b \in \mathbb{C}^{N_{dc} N_e \times N_{dc} } QbCNdcNe×Ndc
Q w ∈ C N d j N e × N d j \mathbf{Q}_w \in \mathbb{C}^{N_{dj} N_e \times N_{dj} } QwCNdjNe×Ndj

w = [ P c w b T x b , P J w w T x w ] T ∈ C N d × 1 \mathbf{w}= \left[ \sqrt{P_c}\mathbf{w}_{b}^T x_{b} , \sqrt{P_J}\mathbf{w}_{w}^T x_{w} \right]^T \in \mathbb{C}^{N_{d} \times 1 } w=[Pc wbTxb,PJ wwTxw]TCNd×1

w b ∈ C N d c × 1 \mathbf{w}_b \in \mathbb{C}^{N_{dc} \times 1 } wbCNdc×1
f b = H b Q b w b \mathbf{f}_b = \mathbf{H}_b \mathbf{Q}_b \mathbf{w}_b fb=HbQbwb
∣ ∣ f b ∣ ∣ = ∣ ∣ H b Q b w b ∣ ∣ 2 2 = 1 ||\mathbf{f}_b|| = ||\mathbf{H}_b \mathbf{Q}_b \mathbf{w}_b||^2_2 = 1 ∣∣fb∣∣=∣∣HbQbwb22=1

w w ∈ C N d j × 1 \mathbf{w}_w \in \mathbb{C}^{N_{dj} \times 1 } wwCNdj×1
f w = H w Q w w w \mathbf{f}_w = \mathbf{H}_w \mathbf{Q}_w \mathbf{w}_w fw=HwQwww
∣ ∣ f w ∣ ∣ = ∣ ∣ H w Q w w w ∣ ∣ 2 2 = 1 ||\mathbf{f}_w|| = ||\mathbf{H}_w \mathbf{Q}_w \mathbf{w}_w||^2_2 = 1 ∣∣fw∣∣=∣∣HwQwww22=1

P w P_w Pw is the power of the jamming signal e w e_w ew , which obeys the uniform distribution in
P w ∼ [ 0 , P w m a x ] P_w \sim \left[0, P_{wmax}\right] Pw[0,Pwmax]

P b ≤ P b m a x P_{b} \leq P_{bmax} PbPbmax
where b b b and w w w denote the legitimate user and Willie, respectively, n i ∼ N ( 0 , σ i 2 ) n_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right) niN(0,σi2) denote the noise at the legitimate user or Willie.

有人工噪声

这里不对,需要对信道矩阵也要分割

H 0 : r ( p w ) = P w a w H H w Q w w w + n w \mathcal{H}_{0}: r\left(\mathbf{p}_{w}\right) = \sqrt{P_w} \mathbf{a}_{w}^{H} \mathbf{H}_w \mathbf{Q}_w \mathbf{w}_{w} + n_{w} H0:r(pw)=Pw awHHwQwww+nw

H 1 : r ( p w ) = P b a w H H Q w b e b + P w a w H H Q w w e w + n w \mathcal{H}_{1}: r\left(\mathbf{p}_{w}\right)=\sqrt{P_b} \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} + \sqrt{P_w} \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} + n_{w} H1:r(pw)=Pb awHHQwbeb+Pw awHHQwwew+nw

Willie有足够的时间来积累能量

H 0 : T 0 = ∣ r ( p w ) ∣ 2 = P w ∣ a w H H Q w w e w ∣ 2 + σ w 2 \mathcal{H}_{0}:T_0 = | r\left(\mathbf{p}_{w}\right) |^2 = P_w \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 + \sigma_{w}^2 H0:T0=r(pw)2=Pw awHHQwwew 2+σw2

H 1 : T 1 = ∣ r ( p w ) ∣ 2 = P b ∣ a w H H Q w b e b ∣ 2 + P w ∣ a w H H Q w w e w ∣ 2 + σ w 2 \mathcal{H}_{1}: T_1 = |r\left(\mathbf{p}_{w}\right)|^2 =P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 + P_w\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 + \sigma_{w}^2 H1:T1=r(pw)2=Pb awHHQwbeb 2+Pw awHHQwwew 2+σw2

Optimal detection threshold: τ \tau τ

Willie makes a binary decision on whether the received signal is noise or signal plus noise.

The test statistic is given by : T ( y w ) = ∣ r ( p w ) ∣ 2 T\left(\mathbf{y}_{w}\right) = |r\left(\mathbf{p}_{w}\right)|^2 T(yw)=r(pw)2

Denote D 0 D_0 D0 and D 1 D_1 D1 as the decisions that the received signal is noise and that the received signal is signal plus noise, respectively.

P F A = P ( D 1 ∣ H 0 ) = P r ( T 0 ≥ τ ) P_{\mathrm{FA}}=\mathbb{P}\left(D_{1} \mid \mathcal{H}_{0}\right) = Pr(T_0 \ge \tau) PFA=P(D1H0)=Pr(T0τ)
P M D = P ( D 0 ∣ H 1 ) = P r ( T 1 < τ ) P_{\mathrm{MD}}=\mathbb{P}\left(D_{0} \mid \mathcal{H}_{1}\right) = Pr(T_1 < \tau) PMD=P(D0H1)=Pr(T1<τ)

P F A = Pr ⁡ ( T 0 ≥ τ ) = { 1 , τ < σ w 2 1 − τ − σ w 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 ≤ τ < σ w 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 0 , τ ≥ σ w 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 \mathcal{P}_{\mathrm{FA}}=\operatorname{Pr}\left(T_{0} \geq \tau\right)=\left\{\begin{array}{ll} 1, & \tau<\sigma_{\mathrm{w}}^{2} \\ 1-\frac{\tau-\sigma_{\mathrm{w}}^{2}}{P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2} \leq \tau<\sigma_{\mathrm{w}}^{2}+P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \\ 0, & \tau \geq \sigma_{\mathrm{w}}^{2}+P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \end{array}\right. PFA=Pr(T0τ)= 1,1PwmaxawHHQwwew2τσw2,0,τ<σw2σw2τ<σw2+Pwmax awHHQwwew 2τσw2+Pwmax awHHQwwew 2

P M D = Pr ⁡ ( T 1 < τ ) = { 0 , τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 τ − σ w 2 − P b ∣ a w H H Q w b e b ∣ 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 ≤ τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 1 , τ ≥ σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 \mathcal{P}_{\mathrm{MD}}=\operatorname{Pr}\left(T_{1}<\tau\right)=\left\{\begin{array}{ll} 0, & \tau<\sigma_{\mathrm{w}}^{2}+P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 \\ \frac{\tau-\sigma_{\mathrm{w}}^{2}-P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 }, & \sigma_{\mathrm{w}}^{2}+ P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right|^2 \leq \tau<\sigma_{\mathrm{w}}^{2} + P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right|^2 +P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 \\ 1, & \tau \geq \sigma_{\mathrm{w}}^{2} + P_{\mathrm{b}} \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right|^2 + P_{\mathrm{w} \max } \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right|^2 \end{array}\right. PMD=Pr(T1<τ)= 0,PwmaxawHHQwwew2τσw2PbawHHQwbeb2,1,τ<σw2+Pb awHHQwbeb 2σw2+Pb awHHQwbeb 2τ<σw2+Pb awHHQwbeb 2+Pwmax awHHQwwew 2τσw2+Pb awHHQwbeb 2+Pwmax awHHQwwew 2

In the worst case, Willie has a perfect knowledge of the channel from Alice to Willie:

P e ≜ P F A + P M D \mathcal{P}_{\mathrm{e}} \triangleq \mathcal{P}_{\mathrm{FA}}+\mathcal{P}_{\mathrm{MD}} PePFA+PMD

if P e = 0 \mathcal{P}_{\mathrm{e}} = 0 Pe=0, due to the expression of P F A = 0 \mathcal{P}_{\mathrm{FA}} = 0 PFA=0 and P M D = 0 \mathcal{P}_{\mathrm{MD}} = 0 PMD=0 :

P w max ⁡ ∣ a w H H Q w w e w ∣ 2 ≤ P b ∣ a w H H Q w b e b ∣ 2 P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \le P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 Pwmax awHHQwwew 2Pb awHHQwbeb 2

So we can’t make P w max ⁡ ∣ a w H H Q w w e w ∣ 2 ≤ P b ∣ a w H H Q w b e b ∣ 2 P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \le P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 Pwmax awHHQwwew 2Pb awHHQwbeb 2 hold

To ensure P e ≠ 0 \mathcal{P}_{\mathrm{e}} \ne 0 Pe=0: We should make:

P w max ⁡ ∣ a w H H Q w w e w ∣ 2 > P b ∣ a w H H Q w b e b ∣ 2 P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 > P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 Pwmax awHHQwwew 2>Pb awHHQwbeb 2

P e = { 1 − τ − σ w 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 ≤ τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 1 − P b ∣ a w H H Q w b e b ∣ 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 ≤ τ < σ w 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 τ − σ w 2 − P b ∣ a w H H Q w b e b ∣ 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , σ w 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 ≤ τ < σ w 2 + P b ∣ a w H H Q w b e b ∣ 2 + P w max ⁡ ∣ a w H H Q w w e w ∣ 2 1 ,  else  (21) \mathcal{P}_{\mathrm{e}}=\left\{\begin{array}{ll} 1-\frac{\tau-\sigma_{\mathrm{w}}^{2}} { P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2} \leq \tau<\sigma_{\mathrm{w}}^{2}+P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 \\ 1-\frac{ P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2}+ P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 \leq \tau<\sigma_{\mathrm{w}}^{2}+P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2\\ \frac{\tau-\sigma_{\mathrm{w}}^{2}-P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2}{ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, & \sigma_{\mathrm{w}}^{2}+ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \leq \tau<\sigma_{\mathrm{w}}^{2}+P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2+ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \\ 1, & \text { else } \end{array}\right. \tag{21} Pe= 1PwmaxawHHQwwew2τσw2,1PwmaxawHHQwwew2PbawHHQwbeb2,PwmaxawHHQwwew2τσw2PbawHHQwbeb2,1,σw2τ<σw2+Pb awHHQwbeb 2σw2+Pb awHHQwbeb 2τ<σw2+Pwmax awHHQwwew 2σw2+Pwmax awHHQwwew 2τ<σw2+Pb awHHQwbeb 2+Pwmax awHHQwwew 2 else (21)

P e \mathcal{P}_{\mathrm{e}} Pe求导,然后可以发现:

Optimal τ \tau τ achieved by (21b)

P ^ e = 1 − P b ∣ a w H H Q w b e b ∣ 2 P w max ⁡ ∣ a w H H Q w w e w ∣ 2 , \widehat{\mathcal{P}}_{\mathrm{e}}=1 - \frac{ P_b\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{ P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }, P e=1PwmaxawHHQwwew2Pb awHHQwbeb 2,

SINR at Bob
γ b ≜ P b ∣ a b H H Q w b e b ∣ 2 P w ∣ a b H H Q w w e w ∣ 2 + σ b 2 (23) \gamma_{b} \triangleq \frac{ P_b\left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{ P_w\left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 + \sigma_{b}^{2} } \tag{23} γbPw abHHQwwew 2+σb2Pb abHHQwbeb 2(23)

We need to maximize γ b \gamma_{b} γb

The covert rate :

R b = log ⁡ 2 ( 1 + γ b ) R_{b}=\log _{2}\left(1+\gamma_{b}\right) Rb=log2(1+γb)

maximize the covert rate:
Optimization problem about w w \mathbf{w}_w ww, w b \mathbf{w}_b wb, Q \mathbf{Q} Q, P b P_b Pb

max ⁡ w w , w b , Q , P b R b ,  s.t.  P ^ e ≥ 1 − ϵ , P b ≤ P b m a x , ∣ ∣ w b ∣ ∣ 2 2 = 1 , ∣ ∣ w w ∣ ∣ 2 2 = 1 , Q 的约束 (24) \begin{aligned} \max _{ \mathbf{w}_w,\mathbf{w}_b,\mathbf{Q}, P_b} & R_{b}, \\ \text { s.t. } & \widehat{\mathcal{P}}_{\mathrm{e}} \geq 1-\epsilon, \\ & P_{b} \leq P_{bmax},\\ &||\mathbf{w}_b||^2_2 = 1,\\ &||\mathbf{w}_w||^2_2 = 1,\\ &\mathbf{Q}的约束 \end{aligned} \tag{24} ww,wb,Q,Pbmax s.t. Rb,P e1ϵ,PbPbmax,∣∣wb22=1,∣∣ww22=1,Q的约束(24)


(Constraint 1 is equal to)

P b ≤ g ( w b , w w , Q ) (25) P_{\mathrm{b}} \leq g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) \tag{25} Pbg(wb,ww,Q)(25)

g ( w b , w w , Q ) g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) g(wb,ww,Q) is expressed as:

g ( w b , w w , Q ) ≜ ϵ P w max ⁡ ∣ a w H H Q w w e w ∣ 2 ∣ a w H H Q w b e b ∣ 2 (26) g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) \triangleq \frac{\epsilon P_{w\max}\left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 }{ \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 } \tag{26} g(wb,ww,Q)awHHQwbeb2ϵPwmax awHHQwwew 2(26)

Note that (23) monotonically increases with P b P_b Pb.

The optimal P b P_b Pb:

P ~ b = min ⁡ { P b m a x , g ( w b , w w , Q ) } . (27) \widetilde{P}_{\mathrm{b}}=\min \left\{P_{\mathrm{bmax}}, g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) \right\} . \tag{27} P b=min{Pbmax,g(wb,ww,Q)}.(27)


(25) (26) (27) 联合表述了第一个约束和第二个约束


针对 P b P_b Pb问题的优化:


max ⁡ w b , w w , Q g ( w b , w w , Q ) . (28) \max _{\mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q}} g\left( \mathbf{w}_{\mathrm{b}}, \mathbf{w}_{\mathrm{w}}, \mathbf{Q} \right) . \tag{28} wb,ww,Qmaxg(wb,ww,Q).(28)


主目标函数,最大化Bob处的信噪比


Due to (23), we need to maximize ∣ a b H H Q w b e b ∣ 2 \left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 abHHQwbeb 2 and minimize ∣ a b H H Q w w e w ∣ 2 \left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 abHHQwwew 2

Hopefully there are feasible solutions for

a b H H Q w w e w = 0 (29) \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} = 0 \tag{29} abHHQwwew=0(29)


Then the optimization of w w \mathbf{w}_w ww and w b \mathbf{w}_b wb is decoupled. (24) is converted into the following two independent optimization problems as

max ⁡ w w ∣ a w H H Q w w e w ∣ 2  s.t.  ∥ w w ∥ 2 2 = 1 , a b H H Q w w e w = 0 , (30) \begin{aligned} \max _{\mathbf{w}_{\mathrm{w}}} & \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} \right| ^2 \\ \text { s.t. } & \left\|\mathbf{w}_{\mathrm{w}}\right\|_{2}^{2}=1,\\ & \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{w} e_{w} = 0, \end{aligned} \tag{30} wwmax s.t.  awHHQwwew 2ww22=1,abHHQwwew=0,(30)

max ⁡ w b ∣ a b H H Q w b e b ∣ 2 σ b 2  s.t.  ∣ a w H H Q w b e b ∣ 2 = 0 , ∥ w b ∥ 2 2 = 1 (31) \begin{aligned} \max _{\boldsymbol{w}_{\mathrm{b}}} & \frac{ \left| \mathbf{a}_{b}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 }{\sigma_{b}^{2}} \\ \text { s.t. } & \left| \mathbf{a}_{w}^{H} \mathbf{H Q} \mathbf{w}_{b} e_{b} \right| ^2 = 0, \\ & \left\|\mathbf{w}_{\mathrm{b}}\right\|_{2}^{2}=1 \end{aligned} \tag{31} wbmax s.t. σb2 abHHQwbeb 2 awHHQwbeb 2=0,wb22=1(31)

where (30a) and (31b) are based on (28) and the transformation from (24a) to (31a) is based on (29).


你可能感兴趣的:(笔记)