linux gt9xx

/* drivers/input/touchscreen/gt9xx.c
 * 
 * 2010 - 2013 Goodix Technology.
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be a reference 
 * to you, when you are integrating the GOODiX's CTP IC into your system, 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
 * General Public License for more details.
 * 
 * Version: 2.0
 * Authors: [email protected], [email protected]
 * Release Date: 2013/04/25
 * Revision record:
 *      V1.0:   
 *          first Release. By Andrew, 2012/08/31 
 *      V1.2:
 *          modify gtp_reset_guitar,slot report,tracking_id & 0x0F. By Andrew, 2012/10/15
 *      V1.4:
 *          modify gt9xx_update.c. By Andrew, 2012/12/12
 *      V1.6: 
 *          1. new heartbeat/esd_protect mechanism(add external watchdog)
 *          2. doze mode, sliding wakeup 
 *          3. 3 more cfg_group(GT9 Sensor_ID: 0~5) 
 *          3. config length verification
 *          4. names & comments
 *                  By Meta, 2013/03/11
 *      V1.8:
 *          1. pen/stylus identification 
 *          2. read double check & fixed config support
 *          3. new esd & slide wakeup optimization
 *                  By Meta, 2013/06/08
 *      V2.0:
 *          1. compatible with GT9XXF
 *          2. send config after resume
 *                  By Meta, 2013/08/06
 */




#include "gt9xx.h"


#if GTP_ICS_SLOT_REPORT
    #include
#endif




#include
#include
#include
#include
#include
#include
#include  
#include
#include
#include
#include
#include
#include
#include
#include
//static const char *goodix_ts_name = "Goodix Capacitive TouchScreen";
static const char *goodix_ts_name = GTP_I2C_NAME;//"gzsd_ts";
static struct workqueue_struct *goodix_wq;
struct i2c_client * i2c_connect_client = NULL; 
u8 config[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH]
                = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};


#if GTP_HAVE_TOUCH_KEY
    static const u16 touch_key_array[] = GTP_KEY_TAB;
    #define GTP_MAX_KEY_NUM  (sizeof(touch_key_array)/sizeof(touch_key_array[0]))
    
#if GTP_DEBUG_ON
    static const int  key_codes[] = {KEY_HOME, KEY_BACK, KEY_MENU, KEY_SEARCH};
    static const char *key_names[] = {"Key_Home", "Key_Back", "Key_Menu", "Key_Search"};
#endif
    
#endif


static s8 gtp_i2c_test(struct i2c_client *client);
void gtp_reset_guitar(struct i2c_client *client, s32 ms);
s32 gtp_send_cfg(struct i2c_client *client);
void gtp_int_sync(s32 ms);


#ifdef CONFIG_HAS_EARLYSUSPEND
static void goodix_ts_early_suspend(struct early_suspend *h);
static void goodix_ts_late_resume(struct early_suspend *h);
#endif
 
#if GTP_CREATE_WR_NODE
extern s32 init_wr_node(struct i2c_client*);
extern void uninit_wr_node(void);
#endif


#if GTP_AUTO_UPDATE
extern u8 gup_init_update_proc(struct goodix_ts_data *);
#endif


#if GTP_ESD_PROTECT
static struct delayed_work gtp_esd_check_work;
static struct workqueue_struct * gtp_esd_check_workqueue = NULL;
static void gtp_esd_check_func(struct work_struct *);
static s32 gtp_init_ext_watchdog(struct i2c_client *client);
void gtp_esd_switch(struct i2c_client *, s32);
#endif


//*********** For GT9XXF Start **********//
#if GTP_COMPATIBLE_MODE
extern s32 i2c_read_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len);
extern s32 i2c_write_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len);
extern s32 gup_clk_calibration(void);
extern s32 gup_fw_download_proc(void *dir, u8 dwn_mode);
extern u8 gup_check_fs_mounted(char *path_name);


void gtp_recovery_reset(struct i2c_client *client);
static s32 gtp_esd_recovery(struct i2c_client *client);
s32 gtp_fw_startup(struct i2c_client *client);
static s32 gtp_main_clk_proc(struct goodix_ts_data *ts);
static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode);
#endif


static DECLARE_WAIT_QUEUE_HEAD(ts_waitq);




#define NR_EVENTS 64
typedef unsigned TS_EVENT;
static TS_EVENT events[NR_EVENTS];
static int evt_head, evt_tail;


#define ts_evt_pending() ((volatile u8)(evt_head != evt_tail))
#define ts_evt_get() (events + evt_tail)
#define ts_evt_pull() (evt_tail = (evt_tail + 1) & (NR_EVENTS - 1))
#define ts_evt_clear() (evt_head = evt_tail = 0)
#define GPIO_INT S3C2410_GPG(4)
#define GPIO_RESET S3C2410_GPF(5)
#define IRQ IRQ_EINT(12)
//#define GZSD_SELECT 1


#ifdef GZSD_SELECT
#define TS_NUM 2
struct ts_i2c_data
{
struct i2c_client *client;
struct delayed_work work;
int irq;
};
static int posx[5], posy[5];
static unsigned char buf[31];


static struct workqueue_struct *ts_wq;
int ts_num = 0;
unsigned ts_x[TS_NUM];
unsigned ts_y[TS_NUM];
int ts_down = 0;
#endif


static void ts_evt_add(unsigned x, unsigned y, unsigned down)
{
unsigned ts_event;
int next_head;
int check = 0;




if(x > 795)
x = 795;
if(y > 475)
y = 475;


check = (x + y + down) & (0x0f);
ts_event = ((x << 12) | (y)) | (down << 31) | (check << 24);
next_head = (evt_head + 1) & (NR_EVENTS - 1);
if (next_head != evt_tail) {
events[evt_head] = ts_event;
evt_head = next_head;
/* wake up any read call */
if (waitqueue_active(&ts_waitq)) {
wake_up_interruptible(&ts_waitq);
}
} else {
/* drop the event and try to wakeup readers */
wake_up_interruptible(&ts_waitq);
}
return;
}
//********** For GT9XXF End **********//
static int s3c_ts_open(struct inode *inode, struct file *filp) {
/* flush event queue */
//ts_evt_clear();
GTP_INFO("s3c_ts_read1");
ts_evt_clear();


return 0;
}




static int s3c_ts_read(struct file *filp, char __user *buff, size_t count, loff_t *offp)
{
DECLARE_WAITQUEUE(wait, current);
char *ptr = buff;
int err = 0;

add_wait_queue(&ts_waitq, &wait);
while (count >= sizeof(TS_EVENT)) {
err = -ERESTARTSYS;
if (signal_pending(current))
break;
if (ts_evt_pending()) {
TS_EVENT *evt = ts_evt_get();
ts_evt_pull();
err = copy_to_user(ptr, evt, sizeof(TS_EVENT));


if (err)
break;


ptr += sizeof(TS_EVENT);
count -= sizeof(TS_EVENT);
continue;
}


set_current_state(TASK_INTERRUPTIBLE);
err = -EAGAIN;
if (filp->f_flags & O_NONBLOCK)
break;
schedule();
}
current->state = TASK_RUNNING;
remove_wait_queue(&ts_waitq, &wait);


return ptr == buff ? err : ptr - buff;
}
static unsigned int s3c_ts_poll( struct file *file, struct poll_table_struct *wait)
{

//GTP_INFO("s3c_ts_read2");
unsigned int mask = 0;
poll_wait(file, &ts_waitq, wait);
if (ts_evt_pending())
mask |= POLLIN | POLLRDNORM;


return mask;
}
static struct file_operations dev_fops = {
.owner = THIS_MODULE,
.read = s3c_ts_read,
.poll = s3c_ts_poll,
.open = s3c_ts_open,
};




#if GTP_SLIDE_WAKEUP
typedef enum
{
    DOZE_DISABLED = 0,
    DOZE_ENABLED = 1,
    DOZE_WAKEUP = 2,
}DOZE_T;
static DOZE_T doze_status = DOZE_DISABLED;
static s8 gtp_enter_doze(struct goodix_ts_data *ts);
#endif


static u8 chip_gt9xxs = 0;  // true if ic is gt9xxs, like gt915s
u8 grp_cfg_version = 0;


/*******************************************************
Function:
    Read data from the i2c slave device.
Input:
    client:     i2c device.
    buf[0~1]:   read start address.
    buf[2~len-1]:   read data buffer.
    len:    GTP_ADDR_LENGTH + read bytes count
Output:
    numbers of i2c_msgs to transfer: 
      2: succeed, otherwise: failed
*********************************************************/
s32 gtp_i2c_read(struct i2c_client *client, u8 *buf, s32 len)
{
    struct i2c_msg msgs[2];
    s32 ret=-1;
    s32 retries = 0;


    GTP_DEBUG_FUNC();


    msgs[0].flags = !I2C_M_RD;
    msgs[0].addr  = client->addr;
    msgs[0].len   = GTP_ADDR_LENGTH;
    msgs[0].buf   = &buf[0];
    //msgs[0].scl_rate = 300 * 1000;    // for Rockchip, etc.
    
    msgs[1].flags = I2C_M_RD;
    msgs[1].addr  = client->addr;
    msgs[1].len   = len - GTP_ADDR_LENGTH;
    msgs[1].buf   = &buf[GTP_ADDR_LENGTH];
    //msgs[1].scl_rate = 300 * 1000;


    while(retries < 5)
    {
        ret = i2c_transfer(client->adapter, msgs, 2);
        if(ret == 2)break;
        retries++;
    }
    if((retries >= 5))
    {
    #if GTP_COMPATIBLE_MODE
        struct goodix_ts_data *ts = i2c_get_clientdata(client);
    #endif
        
    #if GTP_SLIDE_WAKEUP
        // reset chip would quit doze mode
        if (DOZE_ENABLED == doze_status)
        {
            return ret;
        }
    #endif
        GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
    #if GTP_COMPATIBLE_MODE
        if (CHIP_TYPE_GT9F == ts->chip_type)
        {
            gtp_recovery_reset(client);
        }
        else
    #endif
        {
            gtp_reset_guitar(client, 10);  
        }
    }
    return ret;
}


#define DEVICE_NAME "touchscreen"


static struct miscdevice misc = {
.minor = 180,
.name = DEVICE_NAME,
.fops = &dev_fops,
};




/*******************************************************
Function:
    Write data to the i2c slave device.
Input:
    client:     i2c device.
    buf[0~1]:   write start address.
    buf[2~len-1]:   data buffer
    len:    GTP_ADDR_LENGTH + write bytes count
Output:
    numbers of i2c_msgs to transfer: 
        1: succeed, otherwise: failed
*********************************************************/
s32 gtp_i2c_write(struct i2c_client *client,u8 *buf,s32 len)
{
    struct i2c_msg msg;
    s32 ret = -1;
    s32 retries = 0;


    GTP_DEBUG_FUNC();


    msg.flags = !I2C_M_RD;
    msg.addr  = client->addr;
    msg.len   = len;
    msg.buf   = buf;
    //msg.scl_rate = 300 * 1000;    // for Rockchip, etc


    while(retries < 5)
    {
        ret = i2c_transfer(client->adapter, &msg, 1);
        if (ret == 1)break;
        retries++;
    }
    if((retries >= 5))
    {
    #if GTP_COMPATIBLE_MODE
        struct goodix_ts_data *ts = i2c_get_clientdata(client);
    #endif
    
    #if GTP_SLIDE_WAKEUP
        if (DOZE_ENABLED == doze_status)
        {
            return ret;
        }
    #endif
        GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
    #if GTP_COMPATIBLE_MODE
        if (CHIP_TYPE_GT9F == ts->chip_type)
        {
            gtp_recovery_reset(client);
        }
        else
    #endif
        {
            gtp_reset_guitar(client, 10);  
        }
    }
    return ret;
}




/*******************************************************
Function:
    i2c read twice, compare the results
Input:
    client:  i2c device
    addr:    operate address
    rxbuf:   read data to store, if compare successful
    len:     bytes to read
Output:
    FAIL:    read failed
    SUCCESS: read successful
*********************************************************/
s32 gtp_i2c_read_dbl_check(struct i2c_client *client, u16 addr, u8 *rxbuf, int len)
{
    u8 buf[16] = {0};
    u8 confirm_buf[16] = {0};
    u8 retry = 0;
    
    while (retry++ < 3)
    {
        memset(buf, 0xAA, 16);
        buf[0] = (u8)(addr >> 8);
        buf[1] = (u8)(addr & 0xFF);
        gtp_i2c_read(client, buf, len + 2);
        
        memset(confirm_buf, 0xAB, 16);
        confirm_buf[0] = (u8)(addr >> 8);
        confirm_buf[1] = (u8)(addr & 0xFF);
        gtp_i2c_read(client, confirm_buf, len + 2);
        
        if (!memcmp(buf, confirm_buf, len+2))
        {
            memcpy(rxbuf, confirm_buf+2, len);
            return SUCCESS;
        }
    }    
    GTP_ERROR("I2C read 0x%04X, %d bytes, double check failed!", addr, len);
    return FAIL;
}


/*******************************************************
Function:
    Send config.
Input:
    client: i2c device.
Output:
    result of i2c write operation. 
        1: succeed, otherwise: failed
*********************************************************/


s32 gtp_send_cfg(struct i2c_client *client)
{
    s32 ret = 2;


#if GTP_DRIVER_SEND_CFG
    s32 retry = 0;
    struct goodix_ts_data *ts = i2c_get_clientdata(client);


    if (ts->fixed_cfg)
    {
        GTP_INFO("Ic fixed config, no config sent!");
        return 0;
    }
    else if (ts->pnl_init_error)
    {
        GTP_INFO("Error occured in init_panel, no config sent");
        return 0;
    }
    
    GTP_INFO("Driver send config.");
    for (retry = 0; retry < 5; retry++)
    {
        ret = gtp_i2c_write(client, config , GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH);
        if (ret > 0)
        {
            break;
        }
    }
#endif
    return ret;
}
/*******************************************************
Function:
    Disable irq function
Input:
    ts: goodix i2c_client private data
Output:
    None.
*********************************************************/
void gtp_irq_disable(struct goodix_ts_data *ts)
{
    unsigned long irqflags;


    GTP_DEBUG_FUNC();


    spin_lock_irqsave(&ts->irq_lock, irqflags);
    if (!ts->irq_is_disable)
    {
        ts->irq_is_disable = 1; 
        disable_irq_nosync(ts->client->irq);
    }
    spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}


/*******************************************************
Function:
    Enable irq function
Input:
    ts: goodix i2c_client private data
Output:
    None.
*********************************************************/
void gtp_irq_enable(struct goodix_ts_data *ts)
{
    unsigned long irqflags = 0;


    GTP_DEBUG_FUNC();
    
//printk("%s\n", __func__);


    spin_lock_irqsave(&ts->irq_lock, irqflags);
    if (ts->irq_is_disable) 
    {
//printk("call enable_irq\n");
        enable_irq(ts->client->irq);
        ts->irq_is_disable = 0; 
    }
    spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}




/*******************************************************
Function:
    Report touch point event 
Input:
    ts: goodix i2c_client private data
    id: trackId
    x:  input x coordinate
    y:  input y coordinate
    w:  input pressure
Output:
    None.
*********************************************************/
static void gtp_touch_down(struct goodix_ts_data* ts,s32 id,s32 x,s32 y,s32 w)
{
#if GTP_CHANGE_X2Y
    GTP_SWAP(x, y);
#endif


#if GTP_CHANGE_ROTATE180
    GTP_ROTATE(x, y, ts->abs_x_max, ts->abs_y_max);
#endif


    //TNN, sce case
//    x = ts->abs_x_max - x;
//    y = ts->abs_y_max - y;


#if GTP_ICS_SLOT_REPORT
    input_mt_slot(ts->input_dev, id);
    input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
    input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
    input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
    input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);
    input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);


#else
#ifdef GZSD_LINUX
x = GTP_WARP_X(GTP_MAX_WIDTH,x);
y = GTP_WARP_Y(GTP_MAX_HEIGHT,y);
input_report_abs(ts->input_dev, ABS_X, x);
input_report_abs(ts->input_dev, ABS_Y, y);
input_report_abs(ts->input_dev, ABS_PRESSURE, 1);
input_report_key(ts->input_dev, BTN_TOUCH, 1);
input_sync(ts->input_dev);
//GTP_DEBUG("ID:%d, X:%d, Y:%d, W:%d", id, x, 480-y, w);
ts_evt_add(x,480-y,1);
    msleep(5);


    queue_work(goodix_wq, &ts->work);
    
#else
    input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
    input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
    input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);
    input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
    input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
    input_mt_sync(ts->input_dev);
#endif
#endif
    //GTP_DEBUG("ID:%d, X:%d, Y:%d, W:%d", id, x, y, w);
}


/*******************************************************
Function:
    Report touch release event
Input:
    ts: goodix i2c_client private data
Output:
    None.
*********************************************************/
static void gtp_touch_up(struct goodix_ts_data* ts, s32 id)
{
#if GTP_ICS_SLOT_REPORT
    input_mt_slot(ts->input_dev, id);
    input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1);
    GTP_DEBUG("Touch id[%2d] release!", id);
#else
#ifdef GZSD_LINUX
input_report_abs(ts->input_dev, ABS_PRESSURE, 0);
ts_evt_add(0,0,0);


//input_report_key(ts->input_dev, BTN_TOUCH, 0);
#else
    input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0);
    input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0);
    input_mt_sync(ts->input_dev);
#endif
#endif


}


static irqreturn_t ts_ts_isr(int irq, void *dev_id)
{
struct ts_i2c_data *tsdata = (struct ts_i2c_data *)dev_id;
disable_irq_nosync(irq);
ts_evt_clear();
queue_work(ts_wq, &tsdata->work.work);
return IRQ_HANDLED;
}


static void ts_poscheck(struct work_struct *work)
{
struct ts_i2c_data *tsdata = container_of(work,struct ts_i2c_data,work.work);
int ret;
int num;
if(gpio_get_value(GPIO_INT)) {
msleep(5);
if(gpio_get_value(GPIO_INT)) {
ts_evt_add(0,0,0);
enable_irq(tsdata->irq);
} else
goto TS_READ;
}
else {    
TS_READ:
ret = i2c_smbus_read_i2c_block_data(tsdata->client, 0, sizeof(buf), buf);


num =  buf[2] & 0x07;
if (num == 1) {
posx[0] = (s16)(buf[3] & 0x0F)<<8 | (s16)buf[4];  
posy[0] = (s16)(buf[5] & 0x0F)<<8 | (s16)buf[6]; 
ts_evt_add((unsigned long)posx[0],(unsigned long)posy[0],1);
}
else
ts_evt_add(0,0,0);
msleep(5);
queue_work(ts_wq, &tsdata->work.work);
}
}
/*******************************************************
Function:
    Goodix touchscreen work function
Input:
    work: work struct of goodix_workqueue
Output:
    None.
*********************************************************/
static void goodix_ts_work_func(struct work_struct *work)
{
    u8  end_cmd[3] = {GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0};
    u8  point_data[2 + 1 + 8 * GTP_MAX_TOUCH + 1]={GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF};
    u8  touch_num = 0;
    u8  finger = 0;
    static u16 pre_touch = 0;
    static u8 pre_key = 0;
#if GTP_WITH_PEN
    static u8 pre_pen = 0;
#endif
    u8  key_value = 0;
    u8* coor_data = NULL;
    s32 input_x = 0;
    s32 input_y = 0;
    s32 input_w = 0;
    s32 id = 0;
    s32 i  = 0;
    s32 ret = -1;
    struct goodix_ts_data *ts = NULL;
    u8 p_main_clk[6] = {71,71,71,71,71,157};
    u8 p_bak_ref[276]={0};
    p_bak_ref[275]=1;


#if GTP_COMPATIBLE_MODE
    u8 rqst_buf[3] = {0x80, 0x43};  // for GT9XXF
#endif


#if GTP_SLIDE_WAKEUP
    u8 doze_buf[3] = {0x81, 0x4B};
#endif


    GTP_DEBUG_FUNC();


//printk("+%s\n",__func__);


    ts = container_of(work, struct goodix_ts_data, work);
    if (ts->enter_update)
    {
        return;
    }
#if GTP_SLIDE_WAKEUP
    if (DOZE_ENABLED == doze_status)
    {               
        ret = gtp_i2c_read(i2c_connect_client, doze_buf, 3);
        GTP_DEBUG("0x814B = 0x%02X", doze_buf[2]);
        if (ret > 0)
        {               
            if (doze_buf[2] == 0xAA)
            {
                GTP_INFO("Forward slide to light up the screen!");
                doze_status = DOZE_WAKEUP;
                input_report_key(ts->input_dev, KEY_POWER, 1);
                input_sync(ts->input_dev);
                input_report_key(ts->input_dev, KEY_POWER, 0);
                input_sync(ts->input_dev);
                // clear 0x814B
                doze_buf[2] = 0x00;
                gtp_i2c_write(i2c_connect_client, doze_buf, 3);
            }
            else if (doze_buf[2] == 0xBB)
            {
                GTP_INFO("Backward slide to light up the screen!");
                doze_status = DOZE_WAKEUP;
                input_report_key(ts->input_dev, KEY_POWER, 1);
                input_sync(ts->input_dev);
                input_report_key(ts->input_dev, KEY_POWER, 0);
                input_sync(ts->input_dev);
                // clear 0x814B
                doze_buf[2] = 0x00;
                gtp_i2c_write(i2c_connect_client, doze_buf, 3);
            }
            else if (0xC0 == (doze_buf[2] & 0xC0))
            {
                GTP_INFO("Double click to light up the screen!");
                doze_status = DOZE_WAKEUP;
                input_report_key(ts->input_dev, KEY_POWER, 1);
                input_sync(ts->input_dev);
                input_report_key(ts->input_dev, KEY_POWER, 0);
                input_sync(ts->input_dev);
                // clear 0x814B
                doze_buf[2] = 0x00;
                gtp_i2c_write(i2c_connect_client, doze_buf, 3);
            }
            else
            {
                gtp_enter_doze(ts);
            }
        }
        if (ts->use_irq)
        {
            gtp_irq_enable(ts);
        }
        return;
    }
#endif


    ret = gtp_i2c_read(ts->client, point_data, 12);
    if (ret < 0)
    {
        GTP_ERROR("I2C transfer error. errno:%d\n ", ret);
        goto exit_work_func;
    }


    finger = point_data[GTP_ADDR_LENGTH];    


#if GTP_COMPATIBLE_MODE
    // GT9XXF
    if ((finger == 0x00) && (CHIP_TYPE_GT9F == ts->chip_type))     // request arrived
    {
        ret = gtp_i2c_read(ts->client, rqst_buf, 3);
        if (ret < 0)
        {
           GTP_ERROR("Read request status error!");
           goto exit_work_func;
        } 
        
        switch (rqst_buf[2] & 0x0F)
        {
        case GTP_RQST_CONFIG:
            GTP_INFO("Request for config.");
//for(i=0;i<242;i++)
//if((i%16)==0)
// GTP_INFO("0x%x\r", config[i-1]);
//else
  //GTP_INFO("0x%x", config[i]);


            ret = gtp_send_cfg(ts->client);
            if (ret < 0)
            {
                GTP_ERROR("Request for config unresponded!");
            }
            else
            {
                rqst_buf[2] = GTP_RQST_RESPONDED;
                gtp_i2c_write(ts->client, rqst_buf, 3);
                //GTP_INFO("Request for config responded!");
            }
            break;
            
        case GTP_RQST_BAK_REF:
            GTP_INFO("Request for backup reference.");
            ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_SEND);
            if (SUCCESS == ret)
            {
                rqst_buf[2] = GTP_RQST_RESPONDED;
                gtp_i2c_write(ts->client, rqst_buf, 3);
                GTP_INFO("Request for backup reference responded!");
            }
            else
            {
                GTP_ERROR("Requeset for backup reference unresponed!");
            }
            break;
            
        case GTP_RQST_RESET:
            GTP_INFO("Request for reset.");
            gtp_recovery_reset(ts->client);
            break;
            
        case GTP_RQST_MAIN_CLOCK:
//break;


i2c_write_bytes(ts->client, GTP_REG_MAIN_CLK, p_main_clk, 6);
ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
 rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
break;
            GTP_INFO("Request for main clock.");
            ts->rqst_processing = 1;
            ret = gtp_main_clk_proc(ts);
            if (FAIL == ret)
            {
                GTP_ERROR("Request for main clock unresponded!");
            }
            else
            {
                GTP_INFO("Request for main clock responded!");
                rqst_buf[2] = GTP_RQST_RESPONDED;
                gtp_i2c_write(ts->client, rqst_buf, 3);
                ts->rqst_processing = 0;
                ts->clk_chk_fs_times = 0;
            }
            break;
            
        case GTP_RQST_IDLE:
        default:
            break;
        }
    }
#endif


    if((finger & 0x80) == 0)
    {
        goto exit_work_func;
    }


    touch_num = finger & 0x0f;
    if (touch_num > GTP_MAX_TOUCH)
    {
        goto exit_work_func;
    }


    if (touch_num > 1)
    {
        u8 buf[8 * GTP_MAX_TOUCH] = {(GTP_READ_COOR_ADDR + 10) >> 8, (GTP_READ_COOR_ADDR + 10) & 0xff};


        ret = gtp_i2c_read(ts->client, buf, 2 + 8 * (touch_num - 1)); 
        memcpy(&point_data[12], &buf[2], 8 * (touch_num - 1));
    }


#if GTP_HAVE_TOUCH_KEY
    key_value = point_data[3 + 8 * touch_num];
    
    if(key_value || pre_key)
    {
        for (i = 0; i < GTP_MAX_KEY_NUM; i++)
        {
        #if GTP_DEBUG_ON
            for (ret = 0; ret < 4; ++ret)
            {
                if (key_codes[ret] == touch_key_array[i])
                {
                    GTP_DEBUG("Key: %s %s", key_names[ret], (key_value & (0x01 << i)) ? "Down" : "Up");
                    break;
                }
            }
        #endif
            input_report_key(ts->input_dev, touch_key_array[i], key_value & (0x01<         }
        touch_num = 0;
        pre_touch = 0;
    }
#endif
    pre_key = key_value;


    //GTP_DEBUG("pre_touch:%02x, finger:%02x.", pre_touch, finger);


#if GTP_ICS_SLOT_REPORT


#if GTP_WITH_PEN
    if (pre_pen && (touch_num == 0))
    {
        GTP_DEBUG("Pen touch UP(Slot)!");
        input_report_key(ts->input_dev, BTN_TOOL_PEN, 0);
        input_mt_slot(ts->input_dev, 5);
        input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1);
        pre_pen = 0;
    }
#endif
    if (pre_touch || touch_num)
    {
        s32 pos = 0;
        u16 touch_index = 0;
        u8 report_num = 0;
        coor_data = &point_data[3];
        
        if(touch_num)
        {
            id = coor_data[pos] & 0x0F;
        
        #if GTP_WITH_PEN
            id = coor_data[pos];
            if ((id & 0x80))  
            {
                GTP_DEBUG("Pen touch DOWN(Slot)!");
                input_x  = coor_data[pos + 1] | (coor_data[pos + 2] << 8);
                input_y  = coor_data[pos + 3] | (coor_data[pos + 4] << 8);
                input_w  = coor_data[pos + 5] | (coor_data[pos + 6] << 8);
                
                input_report_key(ts->input_dev, BTN_TOOL_PEN, 1);
                input_mt_slot(ts->input_dev, 5);
                input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, 5);
                input_report_abs(ts->input_dev, ABS_MT_POSITION_X, input_x);
                input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, input_y);
                input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, input_w);
                GTP_DEBUG("Pen/Stylus: (%d, %d)[%d]", input_x, input_y, input_w);
                pre_pen = 1;
                pre_touch = 0;
            }    
        #endif
        
            touch_index |= (0x01<         }
        
        GTP_DEBUG("id = %d,touch_index = 0x%x, pre_touch = 0x%x\n",id, touch_index,pre_touch);
        for (i = 0; i < GTP_MAX_TOUCH; i++)
        {
        #if GTP_WITH_PEN
            if (pre_pen == 1)
            {
                break;
            }
        #endif
        
            if ((touch_index & (0x01<             {
                input_x  = coor_data[pos + 1] | (coor_data[pos + 2] << 8);
                input_y  = coor_data[pos + 3] | (coor_data[pos + 4] << 8);
                input_w  = coor_data[pos + 5] | (coor_data[pos + 6] << 8);


                gtp_touch_down(ts, id, input_x, input_y, input_w);
                pre_touch |= 0x01 << i;
                
                report_num++;
                if (report_num < touch_num)
                {
                    pos += 8;
                    id = coor_data[pos] & 0x0F;
                    touch_index |= (0x01<                 }
            }
            else
            {
                gtp_touch_up(ts, i);
                pre_touch &= ~(0x01 << i);
            }
        }
    }
#else
    input_report_key(ts->input_dev, BTN_TOUCH, (touch_num || key_value));
    if (touch_num)
    {
        for (i = 0; i < touch_num; i++)
        {
            coor_data = &point_data[i * 8 + 3];


            id = coor_data[0] & 0x0F;
            input_x  = coor_data[1] | (coor_data[2] << 8);
            input_y  = coor_data[3] | (coor_data[4] << 8);
            input_w  = coor_data[5] | (coor_data[6] << 8);
        
        #if GTP_WITH_PEN
            id = coor_data[0];
            if (id & 0x80)
            {
                GTP_DEBUG("Pen touch DOWN!");
                input_report_key(ts->input_dev, BTN_TOOL_PEN, 1);
                pre_pen = 1;
                id = 0;   
            }
        #endif
        
            gtp_touch_down(ts, id, input_x, input_y, input_w);
        }
    }
    else if (pre_touch)
    {
    
    #if GTP_WITH_PEN
        if (pre_pen == 1)
        {
            GTP_DEBUG("Pen touch UP!");
            input_report_key(ts->input_dev, BTN_TOOL_PEN, 0);
            pre_pen = 0;
        }
    #endif
    
      //  GTP_DEBUG("Touch Release!");
        gtp_touch_up(ts, 0);
    }


    pre_touch = touch_num;
#endif


    input_sync(ts->input_dev);


exit_work_func:
  


    if(!ts->gtp_rawdiff_mode)
    {
        ret = gtp_i2c_write(ts->client, end_cmd, 3);
        if (ret < 0)
        {
            GTP_INFO("I2C write end_cmd error!");
        }
    }
    if (ts->use_irq)
    {
        gtp_irq_enable(ts);
    }
}


/*******************************************************
Function:
    Timer interrupt service routine for polling mode.
Input:
    timer: timer struct pointer
Output:
    Timer work mode. 
        HRTIMER_NORESTART: no restart mode
*********************************************************/
static enum hrtimer_restart goodix_ts_timer_handler(struct hrtimer *timer)
{
    struct goodix_ts_data *ts = container_of(timer, struct goodix_ts_data, timer);


    GTP_DEBUG_FUNC();


    queue_work(goodix_wq, &ts->work);
    hrtimer_start(&ts->timer, ktime_set(0, (GTP_POLL_TIME+6)*1000000), HRTIMER_MODE_REL);
    return HRTIMER_NORESTART;
}


/*******************************************************
Function:
    External interrupt service routine for interrupt mode.
Input:
    irq:  interrupt number.
    dev_id: private data pointer
Output:
    Handle Result.
        IRQ_HANDLED: interrupt handled successfully
*********************************************************/
static irqreturn_t goodix_ts_irq_handler(int irq, void *dev_id)
{
    struct goodix_ts_data *ts = dev_id;


    GTP_DEBUG_FUNC();


//printk("+%s\n", __func__);
 
    gtp_irq_disable(ts);


    queue_work(goodix_wq, &ts->work);
    
    return IRQ_HANDLED;
}
/*******************************************************
Function:
    Synchronization.
Input:
    ms: synchronization time in millisecond.
Output:
    None.
*******************************************************/
void gtp_int_sync(s32 ms)
{
    GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
    msleep(ms);
    GTP_GPIO_AS_INT(GTP_INT_PORT);
}




/*******************************************************
Function:
    Reset chip.
Input:
    ms: reset time in millisecond
Output:
    None.
*******************************************************/
void gtp_reset_guitar(struct i2c_client *client, s32 ms)
{
#if GTP_COMPATIBLE_MODE
    struct goodix_ts_data *ts = i2c_get_clientdata(client);
#endif    


    GTP_DEBUG_FUNC();
    GTP_INFO("Guitar reset");


#if 1 //for TNN
    GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);   // begin select I2C slave addr
    msleep(ms);                         // T2: > 10ms
#endif


    // HIGH: 0x28/0x29, LOW: 0xBA/0xBB
    GTP_GPIO_OUTPUT(GTP_INT_PORT, client->addr == 0x14);


#if 1  //for TNN
    msleep(2);                          // T3: > 100us
    GTP_GPIO_OUTPUT(GTP_RST_PORT, 1);
    
    msleep(6);                          // T4: > 5ms


#if 0
printk("GTP_RST_PORT is high\n");
while(1)
{
    msleep(2);                          // T3: > 100us
    GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);
    msleep(2);                          // T3: > 100us
    GTP_GPIO_OUTPUT(GTP_RST_PORT, 1);
}
#endif


    //GTP_GPIO_AS_INPUT(GTP_RST_PORT);    // end select I2C slave addr
#endif


#if GTP_COMPATIBLE_MODE
    if (CHIP_TYPE_GT9F == ts->chip_type)
    {
        return;
    }
#endif


    gtp_int_sync(50);  
#if GTP_ESD_PROTECT
    gtp_init_ext_watchdog(client);
#endif
}


#if GTP_SLIDE_WAKEUP
/*******************************************************
Function:
    Enter doze mode for sliding wakeup.
Input:
    ts: goodix tp private data
Output:
    1: succeed, otherwise failed
*******************************************************/
static s8 gtp_enter_doze(struct goodix_ts_data *ts)
{
    s8 ret = -1;
    s8 retry = 0;
    u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 8};


    GTP_DEBUG_FUNC();


#if GTP_DBL_CLK_WAKEUP
    i2c_control_buf[2] = 0x09;
#endif


    gtp_irq_disable(ts);
    
    GTP_DEBUG("Entering doze mode.");
    while(retry++ < 5)
    {
        i2c_control_buf[0] = 0x80;
        i2c_control_buf[1] = 0x46;
        ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
        if (ret < 0)
        {
            GTP_DEBUG("failed to set doze flag into 0x8046, %d", retry);
            continue;
        }
        i2c_control_buf[0] = 0x80;
        i2c_control_buf[1] = 0x40;
        ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
        if (ret > 0)
        {
            doze_status = DOZE_ENABLED;
            GTP_INFO("GTP has been working in doze mode!");
            gtp_irq_enable(ts);
            return ret;
        }
        msleep(10);
    }
    GTP_ERROR("GTP send doze cmd failed.");
    gtp_irq_enable(ts);
    return ret;
}
#else 
/*******************************************************
Function:
    Enter sleep mode.
Input:
    ts: private data.
Output:
    Executive outcomes.
       1: succeed, otherwise failed.
*******************************************************/
static s8 gtp_enter_sleep(struct goodix_ts_data * ts)
{
    s8 ret = -1;
    s8 retry = 0;
    u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 5};


#if GTP_COMPATIBLE_MODE
    u8 status_buf[3] = {0x80, 0x44};
#endif
    
    GTP_DEBUG_FUNC();
    
#if GTP_COMPATIBLE_MODE
    if (CHIP_TYPE_GT9F == ts->chip_type)
    {
        // GT9XXF: host interact with ic
        ret = gtp_i2c_read(ts->client, status_buf, 3);
        if (ret < 0)
        {
            GTP_ERROR("failed to get backup-reference status");
        }
        
        if (status_buf[2] & 0x80)
        {
            ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_STORE);
            if (FAIL == ret)
            {
                GTP_ERROR("failed to store bak_ref");
            }
        }
    }
#endif


    GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
    msleep(5);
    
    while(retry++ < 5)
    {
        ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
        if (ret > 0)
        {
            GTP_INFO("GTP enter sleep!");
            
            return ret;
        }
        msleep(10);
    }
    GTP_ERROR("GTP send sleep cmd failed.");
    return ret;
}
#endif 
/*******************************************************
Function:
    Wakeup from sleep.
Input:
    ts: private data.
Output:
    Executive outcomes.
        >0: succeed, otherwise: failed.
*******************************************************/
static s8 gtp_wakeup_sleep(struct goodix_ts_data * ts)
{
    u8 retry = 0;
    s8 ret = -1;
    
    GTP_DEBUG_FUNC();


#if GTP_COMPATIBLE_MODE
    if (CHIP_TYPE_GT9F == ts->chip_type)
    {
        u8 opr_buf[3] = {0x41, 0x80};
        
        GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);
        msleep(5);
    
        for (retry = 0; retry < 20; ++retry)
        {
            // hold ss51 & dsp
            opr_buf[2] = 0x0C;
            ret = gtp_i2c_write(ts->client, opr_buf, 3);
            if (FAIL == ret)
            {
                GTP_ERROR("failed to hold ss51 & dsp!");
                continue;
            }
            opr_buf[2] = 0x00;
            ret = gtp_i2c_read(ts->client, opr_buf, 3);
            if (FAIL == ret)
            {
                GTP_ERROR("failed to get ss51 & dsp status!");
                continue;
            }
            if (0x0C != opr_buf[2])
            {
                GTP_DEBUG("ss51 & dsp not been hold, %d", retry+1);
                continue;
            }
            GTP_DEBUG("ss51 & dsp confirmed hold");
            
            ret = gtp_fw_startup(ts->client);
            if (FAIL == ret)
            {
                GTP_ERROR("failed to startup GT9XXF, process recovery");
                gtp_esd_recovery(ts->client);
            }
            break;
        }
        if (retry >= 10)
        {
            GTP_ERROR("failed to wakeup, processing esd recovery");
            gtp_esd_recovery(ts->client);
        }
        else
        {
            GTP_INFO("GT9XXF gtp wakeup success");
        }
        return ret;
    }
#endif


#if GTP_POWER_CTRL_SLEEP
    while(retry++ < 5)
    {
        gtp_reset_guitar(ts->client, 20);
        
        GTP_INFO("GTP wakeup sleep.");
        return 1;
    }
#else
    while(retry++ < 10)
    {
    #if GTP_SLIDE_WAKEUP
        if (DOZE_WAKEUP != doze_status)       // wakeup not by slide 
        {
            GTP_DEBUG("wakeup by power, reset guitar");
            doze_status = DOZE_DISABLED;   
            gtp_irq_disable(ts);
            gtp_reset_guitar(ts->client, 10);
            gtp_irq_enable(ts);
        }
        else              // wakeup by slide 
        {
            GTP_DEBUG("wakeup by slide/double-click, no reset guitar");
            doze_status = DOZE_DISABLED;
        #if GTP_ESD_PROTECT
            gtp_init_ext_watchdog(ts->client);
        #endif
        }
        
    #else
        if (chip_gt9xxs == 1)
        {
           gtp_reset_guitar(ts->client, 10);
        }
        else
        {
            GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);
            msleep(5);
        }
    #endif
    
        ret = gtp_i2c_test(ts->client);
        if (ret > 0)
        {
            GTP_INFO("GTP wakeup sleep.");
            
        #if (!GTP_SLIDE_WAKEUP)
            if (chip_gt9xxs == 0)
            {
                gtp_int_sync(25);
            #if GTP_ESD_PROTECT
                gtp_init_ext_watchdog(ts->client);
            #endif
            }
        #endif
            
            return ret;
        }
        gtp_reset_guitar(ts->client, 20);
    }
#endif


    GTP_ERROR("GTP wakeup sleep failed.");
    return ret;
}
#if GTP_DRIVER_SEND_CFG
static s32 gtp_get_info(struct goodix_ts_data *ts)
{
    u8 opr_buf[6] = {0};
    s32 ret = 0;
    
    opr_buf[0] = (u8)((GTP_REG_CONFIG_DATA+1) >> 8);
    opr_buf[1] = (u8)((GTP_REG_CONFIG_DATA+1) & 0xFF);
    
    ret = gtp_i2c_read(ts->client, opr_buf, 6);
    if (ret < 0)
    {
        return FAIL;
    }
    
    ts->abs_x_max = (opr_buf[3] << 8) + opr_buf[2];
    ts->abs_y_max = (opr_buf[5] << 8) + opr_buf[4];
    
    opr_buf[0] = (u8)((GTP_REG_CONFIG_DATA+6) >> 8);
    opr_buf[1] = (u8)((GTP_REG_CONFIG_DATA+6) & 0xFF);
    
    ret = gtp_i2c_read(ts->client, opr_buf, 3);
    if (ret < 0)
    {
        return FAIL;
    }
    ts->int_trigger_type = opr_buf[2] & 0x03;
    
    GTP_INFO("X_MAX = %d, Y_MAX = %d, TRIGGER = 0x%02x",
            ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
    
    return SUCCESS;    
}
#endif 


/*******************************************************
Function:
    Initialize gtp.
Input:
    ts: goodix private data
Output:
    Executive outcomes.
        0: succeed, otherwise: failed
*******************************************************/
static s32 gtp_init_panel(struct goodix_ts_data *ts)
{
    s32 ret = -1;


#if GTP_DRIVER_SEND_CFG
    s32 i = 0;
    u8 check_sum = 0;
    u8 opr_buf[16] = {0};
    u8 sensor_id = 0; 
    
    u8 cfg_info_group1[] = CTP_CFG_GROUP1;
    u8 cfg_info_group2[] = CTP_CFG_GROUP2;
    u8 cfg_info_group3[] = CTP_CFG_GROUP3;
    u8 cfg_info_group4[] = CTP_CFG_GROUP4;
    u8 cfg_info_group5[] = CTP_CFG_GROUP5;
    u8 cfg_info_group6[] = CTP_CFG_GROUP6;
    u8 *send_cfg_buf[] = {cfg_info_group1, cfg_info_group2, cfg_info_group3,
                        cfg_info_group4, cfg_info_group5, cfg_info_group6};
    u8 cfg_info_len[] = { CFG_GROUP_LEN(cfg_info_group1),
                          CFG_GROUP_LEN(cfg_info_group2),
                          CFG_GROUP_LEN(cfg_info_group3),
                          CFG_GROUP_LEN(cfg_info_group4),
                          CFG_GROUP_LEN(cfg_info_group5),
                          CFG_GROUP_LEN(cfg_info_group6)};


    GTP_DEBUG_FUNC();
    GTP_DEBUG("Config Groups\' Lengths: %d, %d, %d, %d, %d, %d", 
        cfg_info_len[0], cfg_info_len[1], cfg_info_len[2], cfg_info_len[3],
        cfg_info_len[4], cfg_info_len[5]);


   // memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
  //  memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[0], 228);
//gtp_send_cfg(ts->client);
 //   return 0;


#if GTP_COMPATIBLE_MODE
    if (CHIP_TYPE_GT9F == ts->chip_type)
    {
        ts->fw_error = 0;
    }
    else
#endif
    {
        ret = gtp_i2c_read_dbl_check(ts->client, 0x41E4, opr_buf, 1);
        if (SUCCESS == ret) 
        {
            if (opr_buf[0] != 0xBE)
            {
               // ts->fw_error = 1;
                //GTP_ERROR("Firmware error, no config sent!");
                 GTP_ERROR("Firmware error, no config sent! 0x%x",opr_buf[0]);
// return -1;
            }
        }
    }


    if ((!cfg_info_len[1]) && (!cfg_info_len[2]) && 
        (!cfg_info_len[3]) && (!cfg_info_len[4]) && 
        (!cfg_info_len[5]))
    {
        sensor_id = 0; 
    }
    else
    {
    #if GTP_COMPATIBLE_MODE
        msleep(50);
    #endif
        ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_SENSOR_ID, &sensor_id, 1);
        if (SUCCESS == ret)
        {
            if (sensor_id >= 0x06)
            {
                GTP_ERROR("Invalid sensor_id(0x%02X), No Config Sent!", sensor_id);
                ts->pnl_init_error = 1;
            #if GTP_COMPATIBLE_MODE
                if (CHIP_TYPE_GT9F == ts->chip_type)
                {
                    return -1;
                }
                else
            #endif
                {
                    gtp_get_info(ts);
                }
                return 0;
            }
        }
        else
        {
            GTP_ERROR("Failed to get sensor_id, No config sent!");
            ts->pnl_init_error = 1;
            return -1;
        }
        GTP_INFO("Sensor_ID: %d", sensor_id);
    }
    ts->gtp_cfg_len = cfg_info_len[sensor_id];
    GTP_INFO("CTP_CONFIG_GROUP%d used, config length: %d", sensor_id + 1, ts->gtp_cfg_len);
    
    if (ts->gtp_cfg_len < GTP_CONFIG_MIN_LENGTH)
    {
        GTP_ERROR("Config Group%d is INVALID CONFIG GROUP(Len: %d)! NO Config Sent! You need to check you header file CFG_GROUP section!", sensor_id+1, ts->gtp_cfg_len);
        ts->pnl_init_error = 1;
        return -1;
    }


#if GTP_COMPATIBLE_MODE
    if (CHIP_TYPE_GT9F == ts->chip_type)
    {
        ts->fixed_cfg = 0;
    }
    else
#endif
    {
        ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CONFIG_DATA, &opr_buf[0], 1);
        
        if (ret == SUCCESS)
        {
            GTP_DEBUG("CFG_GROUP%d Config Version: %d, 0x%02X; IC Config Version: %d, 0x%02X", sensor_id+1, 
                        send_cfg_buf[sensor_id][0], send_cfg_buf[sensor_id][0], opr_buf[0], opr_buf[0]);
            
            if (opr_buf[0] < 90)    
            {
                grp_cfg_version = send_cfg_buf[sensor_id][0];       // backup group config version
                send_cfg_buf[sensor_id][0] = 0x00;
                ts->fixed_cfg = 0;
            }
            else        // treated as fixed config, not send config
            {
                GTP_INFO("Ic fixed config with config version(%d, 0x%02X)", opr_buf[0], opr_buf[0]);
                ts->fixed_cfg = 1;
                gtp_get_info(ts);
                return 0;
            }
        }
        else
        {
            GTP_ERROR("Failed to get ic config version!No config sent!");
            return -1;
        }
    }
    
    memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
    memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[sensor_id], ts->gtp_cfg_len);


#if GTP_CUSTOM_CFG
    config[RESOLUTION_LOC]     = (u8)GTP_MAX_WIDTH;
    config[RESOLUTION_LOC + 1] = (u8)(GTP_MAX_WIDTH>>8);
    config[RESOLUTION_LOC + 2] = (u8)GTP_MAX_HEIGHT;
    config[RESOLUTION_LOC + 3] = (u8)(GTP_MAX_HEIGHT>>8);
    
    if (GTP_INT_TRIGGER == 0)  //RISING
    {
        config[TRIGGER_LOC] &= 0xfe; 
    }
    else if (GTP_INT_TRIGGER == 1)  //FALLING
    {
        config[TRIGGER_LOC] |= 0x01;
    }
#endif  // GTP_CUSTOM_CFG
    
    check_sum = 0;
    for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++)
    {
        check_sum += config[i];
    }
    config[ts->gtp_cfg_len] = (~check_sum) + 1;


#else // driver not send config


    ts->gtp_cfg_len = GTP_CONFIG_MAX_LENGTH;
    ret = gtp_i2c_read(ts->client, config, ts->gtp_cfg_len + GTP_ADDR_LENGTH);
    if (ret < 0)
    {
        GTP_ERROR("Read Config Failed, Using Default Resolution & INT Trigger!");
        ts->abs_x_max = GTP_MAX_WIDTH;
        ts->abs_y_max = GTP_MAX_HEIGHT;
        ts->int_trigger_type = GTP_INT_TRIGGER;
    }
    
#endif // GTP_DRIVER_SEND_CFG


    if ((ts->abs_x_max == 0) && (ts->abs_y_max == 0))
    {
        ts->abs_x_max = (config[RESOLUTION_LOC + 1] << 8) + config[RESOLUTION_LOC];
        ts->abs_y_max = (config[RESOLUTION_LOC + 3] << 8) + config[RESOLUTION_LOC + 2];
        ts->int_trigger_type = (config[TRIGGER_LOC]) & 0x03; 
    }


#if GTP_COMPATIBLE_MODE
    if (CHIP_TYPE_GT9F == ts->chip_type)
    {
        u8 sensor_num = 0;
        u8 driver_num = 0;
        u8 have_key = 0;
        
        have_key = (config[GTP_REG_HAVE_KEY - GTP_REG_CONFIG_DATA + 2] & 0x01);
        
        if (1 == ts->is_950)
        {
            driver_num = config[GTP_REG_MATRIX_DRVNUM - GTP_REG_CONFIG_DATA + 2];
            sensor_num = config[GTP_REG_MATRIX_SENNUM - GTP_REG_CONFIG_DATA + 2];
            if (have_key)
            {
                driver_num--;
            }
            ts->bak_ref_len = (driver_num * (sensor_num - 1) + 2) * 2 * 6;
        }
        else
        {
            driver_num = (config[CFG_LOC_DRVA_NUM] & 0x1F) + (config[CFG_LOC_DRVB_NUM]&0x1F);
            if (have_key)
            {
                driver_num--;
            }
            sensor_num = (config[CFG_LOC_SENS_NUM] & 0x0F) + ((config[CFG_LOC_SENS_NUM] >> 4) & 0x0F);
            ts->bak_ref_len = (driver_num * (sensor_num - 2) + 2) * 2;
        }
    
        GTP_INFO("Drv * Sen: %d * %d(key: %d), X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x",
           driver_num, sensor_num, have_key, ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
        return 0;
    }
    else
#endif
    {
    #if GTP_DRIVER_SEND_CFG
for(i=1;i<=228;i++)
if((i%16)==0)
GTP_INFO("0x%x\r", config[i]);
else
  GTP_INFO("0x%x", config[i]);


        ret = gtp_send_cfg(ts->client);
        if (ret < 0)
        {
            GTP_ERROR("Send config error.");
        }
        // set config version to CTP_CFG_GROUP, for resume to send config
        config[GTP_ADDR_LENGTH] = grp_cfg_version;
        check_sum = 0;
        for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++)
        {
            check_sum += config[i];
        }
        config[ts->gtp_cfg_len] = (~check_sum) + 1;
    #endif
        GTP_INFO("X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x", ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
    }
    
    msleep(10);
    return 0;
}


/*******************************************************
Function:
    Read chip version.
Input:
    client:  i2c device
    version: buffer to keep ic firmware version
Output:
    read operation return.
        2: succeed, otherwise: failed
*******************************************************/
s32 gtp_read_version(struct i2c_client *client, u16* version)
{
    s32 ret = -1;
    u8 buf[8] = {GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff};


    GTP_DEBUG_FUNC();


    ret = gtp_i2c_read(client, buf, sizeof(buf));
    if (ret < 0)
    {
        GTP_ERROR("GTP read version failed");
        return ret;
    }


    if (version)
    {
        *version = (buf[7] << 8) | buf[6];
    }
    
    if (buf[5] == 0x00)
    {
        GTP_INFO("IC Version: %c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[7], buf[6]);
    }
    else
    {
        if (buf[5] == 'S' || buf[5] == 's')
        {
            chip_gt9xxs = 1;
        }
        GTP_INFO("IC Version: %c%c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[5], buf[7], buf[6]);
    }
    return ret;
}


/*******************************************************
Function:
    I2c test Function.
Input:
    client:i2c client.
Output:
    Executive outcomes.
        2: succeed, otherwise failed.
*******************************************************/
static s8 gtp_i2c_test(struct i2c_client *client)
{
    u8 test[3] = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
    u8 retry = 0;
    s8 ret = -1;
  
    GTP_DEBUG_FUNC();
  
    while(retry++ < 5)
    {
        ret = gtp_i2c_read(client, test, 3);
        if (ret > 0)
        {
            return ret;
        }
        GTP_ERROR("GTP i2c test failed time %d.",retry);
        msleep(10);
    }
    return ret;
}


/*******************************************************
Function:
    Request gpio(INT & RST) ports.
Input:
    ts: private data.
Output:
    Executive outcomes.
        >= 0: succeed, < 0: failed
*******************************************************/
static s8 gtp_request_io_port(struct goodix_ts_data *ts)
{
    s32 ret = 0;


    GTP_DEBUG_FUNC();


    ret = GTP_GPIO_REQUEST(GTP_INT_PORT, "GTP_INT_IRQ");
    if (ret < 0) 
    {
        GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d", (s32)GTP_INT_PORT, ret);
        ret = -ENODEV;
    }
    else
    {
        GTP_GPIO_AS_INT(GTP_INT_PORT);  
        ts->client->irq = GTP_INT_IRQ;
    }


//    GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);




#if 1  //for TNN
    ret = GTP_GPIO_REQUEST(GTP_RST_PORT, "GTP_RST_PORT");
    if (ret < 0) 
    {
        GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d",(s32)GTP_RST_PORT,ret);
        ret = -ENODEV;
    }


    //GTP_GPIO_AS_INPUT(GTP_RST_PORT);


    gtp_reset_guitar(ts->client, 20);
    
    if(ret < 0)
    {
        GTP_GPIO_FREE(GTP_RST_PORT);
        GTP_GPIO_FREE(GTP_INT_PORT);
    }
#endif


    return ret;
}


/*******************************************************
Function:
    Request interrupt.
Input:
    ts: private data.
Output:
    Executive outcomes.
        0: succeed, -1: failed.
*******************************************************/
static s8 gtp_request_irq(struct goodix_ts_data *ts)
{
    s32 ret = -1;
    const u8 irq_table[] = GTP_IRQ_TAB;


    GTP_DEBUG_FUNC();
    GTP_DEBUG("INT trigger type:%x", ts->int_trigger_type);


    ret  = request_irq(ts->client->irq, 
                       goodix_ts_irq_handler,
                       irq_table[ts->int_trigger_type],
                       ts->client->name,
                       ts);
    if (ret)
    {
        GTP_ERROR("Request IRQ failed!ERRNO:%d.", ret);
        GTP_GPIO_AS_INPUT(GTP_INT_PORT);
        GTP_GPIO_FREE(GTP_INT_PORT);


        hrtimer_init(&ts->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
        ts->timer.function = goodix_ts_timer_handler;
        hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);
        return -1;
    }
    else 
    {
        gtp_irq_disable(ts);
        ts->use_irq = 1;
        return 0;
    }
}


/*******************************************************
Function:
    Request input device Function.
Input:
    ts:private data.
Output:
    Executive outcomes.
        0: succeed, otherwise: failed.
*******************************************************/
static s8 gtp_request_input_dev(struct goodix_ts_data *ts)
{
    s8 ret = -1;
    s8 phys[32];
#if GTP_HAVE_TOUCH_KEY
    u8 index = 0;
#endif
  
    GTP_DEBUG_FUNC();
  
    ts->input_dev = input_allocate_device();
    if (ts->input_dev == NULL)
    {
        GTP_ERROR("Failed to allocate input device.");
        return -ENOMEM;
    }
#ifdef GZSD_LINUX
ts->input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ;
#else
    ts->input_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ;
#endif


#if GTP_ICS_SLOT_REPORT
    __set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
    input_mt_init_slots(ts->input_dev, 16);     // in case of "out of memory"
#else
    #ifndef GZSD_LINUX
    ts->input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
#endif
#endif
#ifndef GZSD_LINUX
    __set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
#endif
#if GTP_HAVE_TOUCH_KEY
    for (index = 0; index < GTP_MAX_KEY_NUM; index++)
    {
        input_set_capability(ts->input_dev, EV_KEY, touch_key_array[index]);  
    }
#endif


#if GTP_SLIDE_WAKEUP
    input_set_capability(ts->input_dev, EV_KEY, KEY_POWER);
#endif 


#if GTP_WITH_PEN
    // pen support
    __set_bit(BTN_TOOL_PEN, ts->input_dev->keybit);
    __set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
    //__set_bit(INPUT_PROP_POINTER, ts->input_dev->propbit);
#endif


#if GTP_CHANGE_X2Y
    GTP_SWAP(ts->abs_x_max, ts->abs_y_max);
#endif
#ifdef GZSD_LINUX
input_set_abs_params(ts->input_dev, ABS_X, 0, GTP_MAX_WIDTH, 0, 0);
input_set_abs_params(ts->input_dev, ABS_Y, 0, GTP_MAX_HEIGHT, 0, 0);
input_set_abs_params(ts->input_dev, ABS_PRESSURE, 0, 1, 0, 0);
#else
    input_set_abs_params(ts->input_dev, ABS_MT_POSITION_X, 0, ts->abs_x_max, 0, 0);
    input_set_abs_params(ts->input_dev, ABS_MT_POSITION_Y, 0, ts->abs_y_max, 0, 0);
    input_set_abs_params(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0, 255, 0, 0);
    input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
    input_set_abs_params(ts->input_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0);
#endif
    sprintf(phys, "input/ts");
    ts->input_dev->name = GTP_I2C_NAME;//goodix_ts_name;
    ts->input_dev->phys = phys;
    ts->input_dev->id.bustype = BUS_I2C;
    ts->input_dev->id.vendor = 0xDEAD;
    ts->input_dev->id.product = 0xBEEF;
    ts->input_dev->id.version = 10427;
    
    ret = input_register_device(ts->input_dev);
    if (ret)
    {
        GTP_ERROR("Register %s input device failed", ts->input_dev->name);
        return -ENODEV;
    }
    
#ifdef CONFIG_HAS_EARLYSUSPEND
    ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
    ts->early_suspend.suspend = goodix_ts_early_suspend;
    ts->early_suspend.resume = goodix_ts_late_resume;
    register_early_suspend(&ts->early_suspend);
#endif


    return 0;
}


//************** For GT9XXF Start *************//
#if GTP_COMPATIBLE_MODE


s32 gtp_fw_startup(struct i2c_client *client)
{
    u8 opr_buf[4];
    s32 ret = 0;
    
    //init sw WDT
opr_buf[0] = 0xAA;
ret = i2c_write_bytes(client, 0x8041, opr_buf, 1);
    if (ret < 0)
    {
        return FAIL;
    }
    
    //release SS51 & DSP
    opr_buf[0] = 0x00;
    ret = i2c_write_bytes(client, 0x4180, opr_buf, 1);
    if (ret < 0)
    {
        return FAIL;
    }
    //int sync
    gtp_int_sync(25);  
    
    //check fw run status
    ret = i2c_read_bytes(client, 0x8041, opr_buf, 1);
    if (ret < 0)
    {
        return FAIL;
    }
    if(0xAA == opr_buf[0])
    {
        GTP_ERROR("IC works abnormally,startup failed.");
        return FAIL;
    }
    else
    {
        GTP_INFO("IC works normally, Startup success.");
        opr_buf[0] = 0xAA;
        i2c_write_bytes(client, 0x8041, opr_buf, 1);
        return SUCCESS;
    }
}


static s32 gtp_esd_recovery(struct i2c_client *client)
{
    s32 retry = 0;
    s32 ret = 0;
    struct goodix_ts_data *ts;
    
    ts = i2c_get_clientdata(client);
    
    gtp_irq_disable(ts);
    
    GTP_INFO("GT9XXF esd recovery mode");
    gtp_reset_guitar(client, 20);       // reset & select I2C addr
    for (retry = 0; retry < 5; ++retry)
    {
        ret = gup_fw_download_proc(NULL, GTP_FL_ESD_RECOVERY); 
        if (FAIL == ret)
        {
            GTP_ERROR("esd recovery failed %d", retry+1);
            continue;
        }
        ret = gtp_fw_startup(ts->client);
        if (FAIL == ret)
        {
            GTP_ERROR("GT9XXF start up failed %d", retry+1);
            continue;
        }
        break;
    }
    gtp_irq_enable(ts);
    
    if (retry >= 5)
    {
        GTP_ERROR("failed to esd recovery");
        return FAIL;
    }
    
    GTP_INFO("Esd recovery successful");
    return SUCCESS;
}


void gtp_recovery_reset(struct i2c_client *client)
{
#if GTP_ESD_PROTECT
    gtp_esd_switch(client, SWITCH_OFF);
#endif
    GTP_DEBUG_FUNC();
    
    gtp_esd_recovery(client); 
    
#if GTP_ESD_PROTECT
    gtp_esd_switch(client, SWITCH_ON);
#endif
}


static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode)
{
    s32 ret = 0;
    s32 i = 0;
    s32 j = 0;
    u16 ref_sum = 0;
    u16 learn_cnt = 0;
    u16 chksum = 0;
    s32 ref_seg_len = 0;
    s32 ref_grps = 0;
    struct file *ref_filp = NULL;
    u8 *p_bak_ref;
    
    ret = gup_check_fs_mounted("/data");
    if (FAIL == ret)
    {
        ts->ref_chk_fs_times++;
        GTP_DEBUG("Ref check /data times/MAX_TIMES: %d / %d", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);
        if (ts->ref_chk_fs_times < GTP_CHK_FS_MNT_MAX)
        {
            msleep(50);
            GTP_INFO("/data not mounted.");
            return FAIL;
        }
        GTP_INFO("check /data mount timeout...");
    }
    else
    {
        GTP_INFO("/data mounted!!!(%d/%d)", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);
    }
    
    p_bak_ref = (u8 *)kzalloc(ts->bak_ref_len, GFP_KERNEL);
    
    if (NULL == p_bak_ref)
    {
        GTP_ERROR("Allocate memory for p_bak_ref failed!");
        return FAIL;   
    }
    
    if (ts->is_950)
    {
        ref_seg_len = ts->bak_ref_len / 6;
        ref_grps = 6;
    }
    else
    {
        ref_seg_len = ts->bak_ref_len;
        ref_grps = 1;
    }
    ref_filp = filp_open(GTP_BAK_REF_PATH, O_RDWR | O_CREAT, 0666);
    if (IS_ERR(ref_filp))
    {
        GTP_INFO("%s is unavailable, default backup-reference used", GTP_BAK_REF_PATH);
        goto bak_ref_default;
    }
    
    switch (mode)
    {
    case GTP_BAK_REF_SEND:
        GTP_INFO("Send backup-reference");
        ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
        ret = ref_filp->f_op->read(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
        if (ret < 0)
        {
            GTP_ERROR("failed to read bak_ref info from file, sending defualt bak_ref");
            goto bak_ref_default;
        }
        for (j = 0; j < ref_grps; ++j)
        {
            ref_sum = 0;
            for (i = 0; i < (ref_seg_len); i += 2)
            {
                ref_sum += (p_bak_ref[i + j * ref_seg_len] << 8) + p_bak_ref[i+1 + j * ref_seg_len];
            }
            learn_cnt = (p_bak_ref[j * ref_seg_len + ref_seg_len -4] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -3]);
            chksum = (p_bak_ref[j * ref_seg_len + ref_seg_len -2] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -1]);
            GTP_DEBUG("learn count = %d", learn_cnt);
            GTP_DEBUG("chksum = %d", chksum);
            GTP_DEBUG("ref_sum = 0x%04X", ref_sum & 0xFFFF);
            // Sum(1~ref_seg_len) == 1
            if (1 != ref_sum)
            {
                GTP_INFO("wrong chksum for bak_ref, reset to 0x00 bak_ref");
                memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);
                p_bak_ref[ref_seg_len + j * ref_seg_len - 1] = 0x01;
            }
            else
            {
                if (j == (ref_grps - 1))
                {
                    GTP_INFO("backup-reference data in %s used", GTP_BAK_REF_PATH);
                }
            }
        }
GTP_INFO("++++ts->bak_ref_len0x%x ",ts->bak_ref_len);
for( i=0;ibak_ref_len;i++)
GTP_INFO("0x%x ",p_bak_ref[i]);
GTP_INFO("-----ts->bak_ref_len0x%x ",ts->bak_ref_len);
        ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
        if (FAIL == ret)
        {
            GTP_ERROR("failed to send bak_ref because of iic comm error");
            filp_close(ref_filp, NULL);
            return FAIL;
        }
        break;
        
    case GTP_BAK_REF_STORE:
        GTP_INFO("Store backup-reference");
        ret = i2c_read_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
        if (ret < 0)
        {
            GTP_ERROR("failed to read bak_ref info, sending default back-reference");
            goto bak_ref_default;
        }
        ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
        ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
        break;
        
    default:
        GTP_ERROR("invalid backup-reference request");
        break;
    }
    filp_close(ref_filp, NULL);
    return SUCCESS;


bak_ref_default:
    
    for (j = 0; j < ref_grps; ++j)
    {
        memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);
        p_bak_ref[j * ref_seg_len + ref_seg_len - 1] = 0x01;  // checksum = 1     
    }
    ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
    if (!IS_ERR(ref_filp))
    {
        GTP_INFO("write backup-reference data into %s", GTP_BAK_REF_PATH);
        ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
        ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
        filp_close(ref_filp, NULL);
    }
    if (ret == FAIL)
    {
        GTP_ERROR("failed to load the default backup reference");
        return FAIL;
    }
    return SUCCESS;
}




static s32 gtp_verify_main_clk(u8 *p_main_clk)
{
    u8 chksum = 0;
    u8 main_clock = p_main_clk[0];
    s32 i = 0;
    
    if (main_clock < 50 || main_clock > 120)    
    {
        return FAIL;
    }
    
    for (i = 0; i < 5; ++i)
    {
        if (main_clock != p_main_clk[i])
        {
            return FAIL;
        }
        chksum += p_main_clk[i];
    }
    chksum += p_main_clk[5];
    if ( (chksum) == 0)
    {
        return SUCCESS;
    }
    else
    {
        return FAIL;
    }
}


static s32 gtp_main_clk_proc(struct goodix_ts_data *ts)
{
    s32 ret = 0;
    s32 i = 0;
    s32 clk_chksum = 0;
    struct file *clk_filp = NULL;
    u8 p_main_clk[6] = {0};


    ret = gup_check_fs_mounted("/data");
    if (FAIL == ret)
    {
        ts->clk_chk_fs_times++;
        GTP_DEBUG("Clock check /data times/MAX_TIMES: %d / %d", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);
        if (ts->clk_chk_fs_times < GTP_CHK_FS_MNT_MAX)
        {
            msleep(50);
            GTP_INFO("/data not mounted.");
            return FAIL;
        }
        GTP_INFO("Check /data mount timeout!");
    }
    else
    {
        GTP_INFO("/data mounted!!!(%d/%d)", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);
    }
    
    clk_filp = filp_open(GTP_MAIN_CLK_PATH, O_RDWR | O_CREAT, 0666);
    if (IS_ERR(clk_filp))
    {
        GTP_ERROR("%s is unavailable, calculate main clock", GTP_MAIN_CLK_PATH);
    }
    else
    {
        clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);
        clk_filp->f_op->read(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);
       
        ret = gtp_verify_main_clk(p_main_clk);
        if (FAIL == ret)
        {
            // recalculate main clock & rewrite main clock data to file
            GTP_ERROR("main clock data in %s is wrong, recalculate main clock", GTP_MAIN_CLK_PATH);
        }
        else
        { 
            GTP_INFO("main clock data in %s used, main clock freq: %d", GTP_MAIN_CLK_PATH, p_main_clk[0]);
            filp_close(clk_filp, NULL);
            goto update_main_clk;
        }
    }
    
#if GTP_ESD_PROTECT
    gtp_esd_switch(ts->client, SWITCH_OFF);
#endif
    ret = gup_clk_calibration();
    gtp_esd_recovery(ts->client);
    
#if GTP_ESD_PROTECT
    gtp_esd_switch(ts->client, SWITCH_ON);
#endif


    GTP_INFO("calibrate main clock: %d", ret);
    if (ret < 50 || ret > 120)
    {
        GTP_ERROR("wrong main clock: %d", ret);
        goto exit_main_clk;
    }
    
    // Sum{0x8020~0x8025} = 0
    for (i = 0; i < 5; ++i)
    {
        p_main_clk[i] = ret;
        clk_chksum += p_main_clk[i];
    }
    p_main_clk[5] = 0 - clk_chksum;
    
    if (!IS_ERR(clk_filp))
    {
        GTP_DEBUG("write main clock data into %s", GTP_MAIN_CLK_PATH);
        clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);
        clk_filp->f_op->write(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);
        filp_close(clk_filp, NULL);
    }
    
update_main_clk:
GTP_INFO("main clock data %d %d %d %d %d %d", p_main_clk[0], p_main_clk[1], p_main_clk[2]\
, p_main_clk[3], p_main_clk[4], p_main_clk[5]);
            
    ret = i2c_write_bytes(ts->client, GTP_REG_MAIN_CLK, p_main_clk, 6);
    if (FAIL == ret)
    {
        GTP_ERROR("update main clock failed!");
        return FAIL;
    }
    return SUCCESS;
    
exit_main_clk:
    if (!IS_ERR(clk_filp))
    {
        filp_close(clk_filp, NULL);
    }
    return FAIL;
}


s32 gtp_gt9xxf_init(struct i2c_client *client)
{
    s32 ret = 0;
    
    ret = gup_fw_download_proc(NULL, GTP_FL_FW_BURN); 
    if (FAIL == ret)
    {
        return FAIL;
    }
    
    ret = gtp_fw_startup(client);
    if (FAIL == ret)
    {
        return FAIL;
    }
    return SUCCESS;
}


void gtp_get_chip_type(struct goodix_ts_data *ts)
{
    u8 opr_buf[10] = {0x00};
    s32 ret = 0;
    
    msleep(10);
    
    ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CHIP_TYPE, opr_buf, 10);
    
    if (FAIL == ret)
    {
        GTP_ERROR("Failed to get chip-type, set chip type default: GOODIX_GT9");
        ts->chip_type = CHIP_TYPE_GT9;
        return;
    }
    
    if (!memcmp(opr_buf, "GOODIX_GT9", 10))
    {
        ts->chip_type = CHIP_TYPE_GT9;
    }
    else // GT9XXF
    {
        ts->chip_type = CHIP_TYPE_GT9F;
    }
    GTP_INFO("Chip Type: %s", (ts->chip_type == CHIP_TYPE_GT9) ? "GOODIX_GT9" : "GOODIX_GT9F");
}


#endif
//************* For GT9XXF End ************//


/*******************************************************
Function:
    I2c probe.
Input:
    client: i2c device struct.
    id: device id.
Output:
    Executive outcomes. 
        0: succeed.
*******************************************************/
 static int goodix_ts_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
    s32 ret = -1;
    struct goodix_ts_data *ts;
    u16 version_info;
    
    GTP_DEBUG_FUNC();
    
    //do NOT remove these logs
    GTP_INFO("GTP Driver Version: %s", GTP_DRIVER_VERSION);
    GTP_INFO("GTP Driver Built@%s, %s", __TIME__, __DATE__);
    GTP_INFO("GTP I2C Address: 0x%02x", client->addr);


    i2c_connect_client = client;
    
    if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) 
    {
        GTP_ERROR("I2C check functionality failed.");
        return -ENODEV;
    }
    ts = kzalloc(sizeof(*ts), GFP_KERNEL);
    if (ts == NULL)
    {
        GTP_ERROR("Alloc GFP_KERNEL memory failed.");
        return -ENOMEM;
    }
    
    memset(ts, 0, sizeof(*ts));
    INIT_WORK(&ts->work, goodix_ts_work_func);
    ts->client = client;
    spin_lock_init(&ts->irq_lock);          // 2.6.39 later
    // ts->irq_lock = SPIN_LOCK_UNLOCKED;   // 2.6.39 & before
#if GTP_ESD_PROTECT
    ts->clk_tick_cnt = 2 * HZ;      // HZ: clock ticks in 1 second generated by system
    GTP_DEBUG("Clock ticks for an esd cycle: %d", ts->clk_tick_cnt);  
    spin_lock_init(&ts->esd_lock);
    // ts->esd_lock = SPIN_LOCK_UNLOCKED;
#endif
    i2c_set_clientdata(client, ts);
    
    ts->gtp_rawdiff_mode = 0;


    ret = gtp_request_io_port(ts);
    if (ret < 0)
    {
        GTP_ERROR("GTP request IO port failed.");
        kfree(ts);
        return ret;
    }
    
#if GTP_COMPATIBLE_MODE
    gtp_get_chip_type(ts);
    
    if (CHIP_TYPE_GT9F == ts->chip_type)
    {
        ret = gtp_gt9xxf_init(ts->client);
        if (FAIL == ret)
        {
            GTP_INFO("Failed to init GT9XXF.");
        }
    }
#endif


    ret = gtp_i2c_test(client);
    if (ret < 0)
    {
        GTP_ERROR("I2C communication ERROR!");
    }


    ret = gtp_read_version(client, &version_info);
    if (ret < 0)
    {
        GTP_ERROR("Read version failed.");
    }
    
    ret = gtp_init_panel(ts);
    if (ret < 0)
    {
        GTP_ERROR("GTP init panel failed.");
        ts->abs_x_max = GTP_MAX_WIDTH;
        ts->abs_y_max = GTP_MAX_HEIGHT;
        ts->int_trigger_type = GTP_INT_TRIGGER;
    }
    


    
#if GTP_AUTO_UPDATE
    ret = gup_init_update_proc(ts);
    if (ret < 0)
    {
        GTP_ERROR("Create update thread error.");
    }
#endif


    ret = gtp_request_input_dev(ts);
    if (ret < 0)
    {
        GTP_ERROR("GTP request input dev failed");
    }
    
    ret = gtp_request_irq(ts); 
    if (ret < 0)
    {
        GTP_INFO("GTP works in polling mode.");
    }
    else
    {
        GTP_INFO("GTP works in interrupt mode.");
    }


    if (ts->use_irq)
    {
        gtp_irq_enable(ts);
    }
    
#if GTP_CREATE_WR_NODE
    init_wr_node(client);
#endif
    
#if GTP_ESD_PROTECT
    gtp_esd_switch(client, SWITCH_ON);
#endif
    return 0;
}




/*******************************************************
Function:
    Goodix touchscreen driver release function.
Input:
    client: i2c device struct.
Output:
    Executive outcomes. 0---succeed.
*******************************************************/
static int goodix_ts_remove(struct i2c_client *client)
{
    struct goodix_ts_data *ts = i2c_get_clientdata(client);
    
    GTP_DEBUG_FUNC();
    
#ifdef CONFIG_HAS_EARLYSUSPEND
    unregister_early_suspend(&ts->early_suspend);
#endif


#if GTP_CREATE_WR_NODE
    uninit_wr_node();
#endif


#if GTP_ESD_PROTECT
    destroy_workqueue(gtp_esd_check_workqueue);
#endif


    if (ts) 
    {
        if (ts->use_irq)
        {
            GTP_GPIO_AS_INPUT(GTP_INT_PORT);
            GTP_GPIO_FREE(GTP_INT_PORT);
            free_irq(client->irq, ts);
        }
        else
        {
            hrtimer_cancel(&ts->timer);
        }
    }   
    
    GTP_INFO("GTP driver removing...");
    i2c_set_clientdata(client, NULL);
    input_unregister_device(ts->input_dev);
    kfree(ts);


    return 0;
}


#ifdef CONFIG_HAS_EARLYSUSPEND
/*******************************************************
Function:
    Early suspend function.
Input:
    h: early_suspend struct.
Output:
    None.
*******************************************************/
static void goodix_ts_early_suspend(struct early_suspend *h)
{
    struct goodix_ts_data *ts;
    s8 ret = -1;    
    ts = container_of(h, struct goodix_ts_data, early_suspend);
    
    GTP_DEBUG_FUNC();


#if GTP_ESD_PROTECT
    gtp_esd_switch(ts->client, SWITCH_OFF);
#endif
    ts->gtp_is_suspend = 1;
    
#if GTP_SLIDE_WAKEUP
    ret = gtp_enter_doze(ts);
#else
    if (ts->use_irq)
    {
        gtp_irq_disable(ts);
    }
    else
    {
        hrtimer_cancel(&ts->timer);
    }
    ret = gtp_enter_sleep(ts);
#endif 
    if (ret < 0)
    {
        GTP_ERROR("GTP early suspend failed.");
    }
    // to avoid waking up while not sleeping
    //  delay 48 + 10ms to ensure reliability    
    msleep(58);   
}


/*******************************************************
Function:
    Late resume function.
Input:
    h: early_suspend struct.
Output:
    None.
*******************************************************/
static void goodix_ts_late_resume(struct early_suspend *h)
{
    struct goodix_ts_data *ts;
    s8 ret = -1;
    ts = container_of(h, struct goodix_ts_data, early_suspend);
    
    GTP_DEBUG_FUNC();


    ret = gtp_wakeup_sleep(ts);


#if GTP_SLIDE_WAKEUP
    doze_status = DOZE_DISABLED;
#endif


    if (ret < 0)
    {
        GTP_ERROR("GTP later resume failed.");
    }
#if (GTP_COMPATIBLE_MODE)
    if (CHIP_TYPE_GT9F == ts->chip_type)
    {
        // do nothing
    }
    else
#endif
    {GTP_INFO("it is not CHIP_TYPE_GT9F");
        gtp_send_cfg(ts->client);
    }


    if (ts->use_irq)
    {
        gtp_irq_enable(ts);
    }
    else
    {
        hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);
    }


    ts->gtp_is_suspend = 0;
#if GTP_ESD_PROTECT
    gtp_esd_switch(ts->client, SWITCH_ON);
#endif
}
#endif


#if GTP_ESD_PROTECT
s32 gtp_i2c_read_no_rst(struct i2c_client *client, u8 *buf, s32 len)
{
    struct i2c_msg msgs[2];
    s32 ret=-1;
    s32 retries = 0;


    GTP_DEBUG_FUNC();


    msgs[0].flags = !I2C_M_RD;
    msgs[0].addr  = client->addr;
    msgs[0].len   = GTP_ADDR_LENGTH;
    msgs[0].buf   = &buf[0];
    //msgs[0].scl_rate = 300 * 1000;    // for Rockchip, etc.
    
    msgs[1].flags = I2C_M_RD;
    msgs[1].addr  = client->addr;
    msgs[1].len   = len - GTP_ADDR_LENGTH;
    msgs[1].buf   = &buf[GTP_ADDR_LENGTH];
    //msgs[1].scl_rate = 300 * 1000;


    while(retries < 5)
    {
        ret = i2c_transfer(client->adapter, msgs, 2);
        if(ret == 2)break;
        retries++;
    }
    if ((retries >= 5))
    {    
        GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
    }
    return ret;
}


s32 gtp_i2c_write_no_rst(struct i2c_client *client,u8 *buf,s32 len)
{
    struct i2c_msg msg;
    s32 ret = -1;
    s32 retries = 0;


    GTP_DEBUG_FUNC();


    msg.flags = !I2C_M_RD;
    msg.addr  = client->addr;
    msg.len   = len;
    msg.buf   = buf;
    //msg.scl_rate = 300 * 1000;    // for Rockchip, etc


    while(retries < 5)
    {
        ret = i2c_transfer(client->adapter, &msg, 1);
        if (ret == 1)break;
        retries++;
    }
    if((retries >= 5))
    {
        GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
    }
    return ret;
}
/*******************************************************
Function:
    switch on & off esd delayed work
Input:
    client:  i2c device
    on:      SWITCH_ON / SWITCH_OFF
Output:
    void
*********************************************************/
void gtp_esd_switch(struct i2c_client *client, s32 on)
{
    struct goodix_ts_data *ts;
    
    ts = i2c_get_clientdata(client);
    spin_lock(&ts->esd_lock);
    
    if (SWITCH_ON == on)     // switch on esd 
    {
        if (!ts->esd_running)
        {
            ts->esd_running = 1;
            spin_unlock(&ts->esd_lock);
            GTP_INFO("Esd started");
            queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt);
        }
        else
        {
            spin_unlock(&ts->esd_lock);
        }
    }
    else    // switch off esd
    {
        if (ts->esd_running)
        {
            ts->esd_running = 0;
            spin_unlock(&ts->esd_lock);
            GTP_INFO("Esd cancelled");
            cancel_delayed_work_sync(>p_esd_check_work);
        }
        else
        {
            spin_unlock(&ts->esd_lock);
        }
    }
}


/*******************************************************
Function:
    Initialize external watchdog for esd protect
Input:
    client:  i2c device.
Output:
    result of i2c write operation. 
        1: succeed, otherwise: failed
*********************************************************/
static s32 gtp_init_ext_watchdog(struct i2c_client *client)
{
    u8 opr_buffer[3] = {0x80, 0x41, 0xAA};
    GTP_DEBUG("[Esd]Init external watchdog");
    return gtp_i2c_write_no_rst(client, opr_buffer, 3);
}


/*******************************************************
Function:
    Esd protect function.
    External watchdog added by meta, 2013/03/07
Input:
    work: delayed work
Output:
    None.
*******************************************************/
static void gtp_esd_check_func(struct work_struct *work)
{
    s32 i;
    s32 ret = -1;
    struct goodix_ts_data *ts = NULL;
    u8 esd_buf[4] = {0x80, 0x40};
    
    GTP_DEBUG_FUNC();
   
    ts = i2c_get_clientdata(i2c_connect_client);


    if (ts->gtp_is_suspend)
    {
        GTP_INFO("Esd suspended!");
        return;
    }
    
    for (i = 0; i < 3; i++)
    {
        ret = gtp_i2c_read_no_rst(ts->client, esd_buf, 4);
        
        GTP_DEBUG("[Esd]0x8040 = 0x%02X, 0x8041 = 0x%02X", esd_buf[2], esd_buf[3]);
        if ((ret < 0))
        {
            // IIC communication problem
            continue;
        }
        else
        { 
            if ((esd_buf[2] == 0xAA) || (esd_buf[3] != 0xAA))
            {
                // IC works abnormally..
                u8 chk_buf[4] = {0x80, 0x40};
                
                gtp_i2c_read_no_rst(ts->client, chk_buf, 4);
                
                GTP_DEBUG("[Check]0x8040 = 0x%02X, 0x8041 = 0x%02X", chk_buf[2], chk_buf[3]);
                
                if ((chk_buf[2] == 0xAA) || (chk_buf[3] != 0xAA))
                {
                    i = 3;
                    break;
                }
                else
                {
                    continue;
                }
            }
            else 
            {
                // IC works normally, Write 0x8040 0xAA, feed the dog
                esd_buf[2] = 0xAA; 
                gtp_i2c_write_no_rst(ts->client, esd_buf, 3);
                break;
            }
        }
    }
    if (i >= 3)
    {
    #if GTP_COMPATIBLE_MODE
        if (CHIP_TYPE_GT9F == ts->chip_type)
        {        
            if (ts->rqst_processing)
            {
                GTP_INFO("Request processing, no esd recovery");
            }
            else
            {
                GTP_ERROR("IC working abnormally! Process esd recovery.");
                gtp_esd_recovery(ts->client);
            }
        }
        else
    #endif
        {
            GTP_ERROR("IC working abnormally! Process reset guitar.");
            gtp_reset_guitar(ts->client, 50);
        }
    }


    if(!ts->gtp_is_suspend)
    {
        queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt);
    }
    else
    {
        GTP_INFO("Esd suspended!");
    }
    return;
}
#endif


static const struct i2c_device_id goodix_ts_id[] = {
    { GTP_I2C_NAME, 0 },
    { }
};


static struct i2c_driver goodix_ts_driver = {
    .probe      = goodix_ts_probe,
    .remove     = goodix_ts_remove,
//#ifndef CONFIG_HAS_EARLYSUSPEND
#ifdef CONFIG_HAS_EARLYSUSPEND
    .suspend    = goodix_ts_early_suspend,
    .resume     = goodix_ts_late_resume,
#endif
    .id_table   = goodix_ts_id,
    .driver = {
        .name     = GTP_I2C_NAME,
        .owner    = THIS_MODULE,
    },
};


/*******************************************************    
Function:
    Driver Install function.
Input:
    None.
Output:
    Executive Outcomes. 0---succeed.
********************************************************/
static int __devinit goodix_ts_init(void)
{
    s32 ret;


    GTP_DEBUG_FUNC();   
    GTP_INFO("GTP driver installing...");
    goodix_wq = create_singlethread_workqueue("goodix_wq");
    if (!goodix_wq)
    {
        GTP_ERROR("Creat workqueue failed.");
        return -ENOMEM;
    }
#if GTP_ESD_PROTECT
    INIT_DELAYED_WORK(>p_esd_check_work, gtp_esd_check_func);
    gtp_esd_check_workqueue = create_workqueue("gtp_esd_check");
#endif
    ret = i2c_add_driver(&goodix_ts_driver);
misc_register(&misc);


    return ret; 
}


/*******************************************************    
Function:
    Driver uninstall function.
Input:
    None.
Output:
    Executive Outcomes. 0---succeed.
********************************************************/
static void __exit goodix_ts_exit(void)
{
    GTP_DEBUG_FUNC();
    GTP_INFO("GTP driver exited.");
    i2c_del_driver(&goodix_ts_driver);
    if (goodix_wq)
    {
        destroy_workqueue(goodix_wq);
    }
}


late_initcall(goodix_ts_init);
module_exit(goodix_ts_exit);


MODULE_DESCRIPTION("GTP Series Driver");
MODULE_LICENSE("GPL");

你可能感兴趣的:(linux gt9xx)