/* drivers/input/touchscreen/gt9xx.c
*
* 2010 - 2013 Goodix Technology.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be a reference
* to you, when you are integrating the GOODiX's CTP IC into your system,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* Version: 2.0
* Authors:
[email protected],
[email protected]
* Release Date: 2013/04/25
* Revision record:
* V1.0:
* first Release. By Andrew, 2012/08/31
* V1.2:
* modify gtp_reset_guitar,slot report,tracking_id & 0x0F. By Andrew, 2012/10/15
* V1.4:
* modify gt9xx_update.c. By Andrew, 2012/12/12
* V1.6:
* 1. new heartbeat/esd_protect mechanism(add external watchdog)
* 2. doze mode, sliding wakeup
* 3. 3 more cfg_group(GT9 Sensor_ID: 0~5)
* 3. config length verification
* 4. names & comments
* By Meta, 2013/03/11
* V1.8:
* 1. pen/stylus identification
* 2. read double check & fixed config support
* 3. new esd & slide wakeup optimization
* By Meta, 2013/06/08
* V2.0:
* 1. compatible with GT9XXF
* 2. send config after resume
* By Meta, 2013/08/06
*/
#include "gt9xx.h"
#if GTP_ICS_SLOT_REPORT
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//static const char *goodix_ts_name = "Goodix Capacitive TouchScreen";
static const char *goodix_ts_name = GTP_I2C_NAME;//"gzsd_ts";
static struct workqueue_struct *goodix_wq;
struct i2c_client * i2c_connect_client = NULL;
u8 config[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH]
= {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
#if GTP_HAVE_TOUCH_KEY
static const u16 touch_key_array[] = GTP_KEY_TAB;
#define GTP_MAX_KEY_NUM (sizeof(touch_key_array)/sizeof(touch_key_array[0]))
#if GTP_DEBUG_ON
static const int key_codes[] = {KEY_HOME, KEY_BACK, KEY_MENU, KEY_SEARCH};
static const char *key_names[] = {"Key_Home", "Key_Back", "Key_Menu", "Key_Search"};
#endif
#endif
static s8 gtp_i2c_test(struct i2c_client *client);
void gtp_reset_guitar(struct i2c_client *client, s32 ms);
s32 gtp_send_cfg(struct i2c_client *client);
void gtp_int_sync(s32 ms);
#ifdef CONFIG_HAS_EARLYSUSPEND
static void goodix_ts_early_suspend(struct early_suspend *h);
static void goodix_ts_late_resume(struct early_suspend *h);
#endif
#if GTP_CREATE_WR_NODE
extern s32 init_wr_node(struct i2c_client*);
extern void uninit_wr_node(void);
#endif
#if GTP_AUTO_UPDATE
extern u8 gup_init_update_proc(struct goodix_ts_data *);
#endif
#if GTP_ESD_PROTECT
static struct delayed_work gtp_esd_check_work;
static struct workqueue_struct * gtp_esd_check_workqueue = NULL;
static void gtp_esd_check_func(struct work_struct *);
static s32 gtp_init_ext_watchdog(struct i2c_client *client);
void gtp_esd_switch(struct i2c_client *, s32);
#endif
//*********** For GT9XXF Start **********//
#if GTP_COMPATIBLE_MODE
extern s32 i2c_read_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len);
extern s32 i2c_write_bytes(struct i2c_client *client, u16 addr, u8 *buf, s32 len);
extern s32 gup_clk_calibration(void);
extern s32 gup_fw_download_proc(void *dir, u8 dwn_mode);
extern u8 gup_check_fs_mounted(char *path_name);
void gtp_recovery_reset(struct i2c_client *client);
static s32 gtp_esd_recovery(struct i2c_client *client);
s32 gtp_fw_startup(struct i2c_client *client);
static s32 gtp_main_clk_proc(struct goodix_ts_data *ts);
static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode);
#endif
static DECLARE_WAIT_QUEUE_HEAD(ts_waitq);
#define NR_EVENTS 64
typedef unsigned TS_EVENT;
static TS_EVENT events[NR_EVENTS];
static int evt_head, evt_tail;
#define ts_evt_pending() ((volatile u8)(evt_head != evt_tail))
#define ts_evt_get() (events + evt_tail)
#define ts_evt_pull() (evt_tail = (evt_tail + 1) & (NR_EVENTS - 1))
#define ts_evt_clear() (evt_head = evt_tail = 0)
#define GPIO_INT S3C2410_GPG(4)
#define GPIO_RESET S3C2410_GPF(5)
#define IRQ IRQ_EINT(12)
//#define GZSD_SELECT 1
#ifdef GZSD_SELECT
#define TS_NUM 2
struct ts_i2c_data
{
struct i2c_client *client;
struct delayed_work work;
int irq;
};
static int posx[5], posy[5];
static unsigned char buf[31];
static struct workqueue_struct *ts_wq;
int ts_num = 0;
unsigned ts_x[TS_NUM];
unsigned ts_y[TS_NUM];
int ts_down = 0;
#endif
static void ts_evt_add(unsigned x, unsigned y, unsigned down)
{
unsigned ts_event;
int next_head;
int check = 0;
if(x > 795)
x = 795;
if(y > 475)
y = 475;
check = (x + y + down) & (0x0f);
ts_event = ((x << 12) | (y)) | (down << 31) | (check << 24);
next_head = (evt_head + 1) & (NR_EVENTS - 1);
if (next_head != evt_tail) {
events[evt_head] = ts_event;
evt_head = next_head;
/* wake up any read call */
if (waitqueue_active(&ts_waitq)) {
wake_up_interruptible(&ts_waitq);
}
} else {
/* drop the event and try to wakeup readers */
wake_up_interruptible(&ts_waitq);
}
return;
}
//********** For GT9XXF End **********//
static int s3c_ts_open(struct inode *inode, struct file *filp) {
/* flush event queue */
//ts_evt_clear();
GTP_INFO("s3c_ts_read1");
ts_evt_clear();
return 0;
}
static int s3c_ts_read(struct file *filp, char __user *buff, size_t count, loff_t *offp)
{
DECLARE_WAITQUEUE(wait, current);
char *ptr = buff;
int err = 0;
add_wait_queue(&ts_waitq, &wait);
while (count >= sizeof(TS_EVENT)) {
err = -ERESTARTSYS;
if (signal_pending(current))
break;
if (ts_evt_pending()) {
TS_EVENT *evt = ts_evt_get();
ts_evt_pull();
err = copy_to_user(ptr, evt, sizeof(TS_EVENT));
if (err)
break;
ptr += sizeof(TS_EVENT);
count -= sizeof(TS_EVENT);
continue;
}
set_current_state(TASK_INTERRUPTIBLE);
err = -EAGAIN;
if (filp->f_flags & O_NONBLOCK)
break;
schedule();
}
current->state = TASK_RUNNING;
remove_wait_queue(&ts_waitq, &wait);
return ptr == buff ? err : ptr - buff;
}
static unsigned int s3c_ts_poll( struct file *file, struct poll_table_struct *wait)
{
//GTP_INFO("s3c_ts_read2");
unsigned int mask = 0;
poll_wait(file, &ts_waitq, wait);
if (ts_evt_pending())
mask |= POLLIN | POLLRDNORM;
return mask;
}
static struct file_operations dev_fops = {
.owner = THIS_MODULE,
.read = s3c_ts_read,
.poll = s3c_ts_poll,
.open = s3c_ts_open,
};
#if GTP_SLIDE_WAKEUP
typedef enum
{
DOZE_DISABLED = 0,
DOZE_ENABLED = 1,
DOZE_WAKEUP = 2,
}DOZE_T;
static DOZE_T doze_status = DOZE_DISABLED;
static s8 gtp_enter_doze(struct goodix_ts_data *ts);
#endif
static u8 chip_gt9xxs = 0; // true if ic is gt9xxs, like gt915s
u8 grp_cfg_version = 0;
/*******************************************************
Function:
Read data from the i2c slave device.
Input:
client: i2c device.
buf[0~1]: read start address.
buf[2~len-1]: read data buffer.
len: GTP_ADDR_LENGTH + read bytes count
Output:
numbers of i2c_msgs to transfer:
2: succeed, otherwise: failed
*********************************************************/
s32 gtp_i2c_read(struct i2c_client *client, u8 *buf, s32 len)
{
struct i2c_msg msgs[2];
s32 ret=-1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msgs[0].flags = !I2C_M_RD;
msgs[0].addr = client->addr;
msgs[0].len = GTP_ADDR_LENGTH;
msgs[0].buf = &buf[0];
//msgs[0].scl_rate = 300 * 1000; // for Rockchip, etc.
msgs[1].flags = I2C_M_RD;
msgs[1].addr = client->addr;
msgs[1].len = len - GTP_ADDR_LENGTH;
msgs[1].buf = &buf[GTP_ADDR_LENGTH];
//msgs[1].scl_rate = 300 * 1000;
while(retries < 5)
{
ret = i2c_transfer(client->adapter, msgs, 2);
if(ret == 2)break;
retries++;
}
if((retries >= 5))
{
#if GTP_COMPATIBLE_MODE
struct goodix_ts_data *ts = i2c_get_clientdata(client);
#endif
#if GTP_SLIDE_WAKEUP
// reset chip would quit doze mode
if (DOZE_ENABLED == doze_status)
{
return ret;
}
#endif
GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
gtp_recovery_reset(client);
}
else
#endif
{
gtp_reset_guitar(client, 10);
}
}
return ret;
}
#define DEVICE_NAME "touchscreen"
static struct miscdevice misc = {
.minor = 180,
.name = DEVICE_NAME,
.fops = &dev_fops,
};
/*******************************************************
Function:
Write data to the i2c slave device.
Input:
client: i2c device.
buf[0~1]: write start address.
buf[2~len-1]: data buffer
len: GTP_ADDR_LENGTH + write bytes count
Output:
numbers of i2c_msgs to transfer:
1: succeed, otherwise: failed
*********************************************************/
s32 gtp_i2c_write(struct i2c_client *client,u8 *buf,s32 len)
{
struct i2c_msg msg;
s32 ret = -1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msg.flags = !I2C_M_RD;
msg.addr = client->addr;
msg.len = len;
msg.buf = buf;
//msg.scl_rate = 300 * 1000; // for Rockchip, etc
while(retries < 5)
{
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret == 1)break;
retries++;
}
if((retries >= 5))
{
#if GTP_COMPATIBLE_MODE
struct goodix_ts_data *ts = i2c_get_clientdata(client);
#endif
#if GTP_SLIDE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
return ret;
}
#endif
GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d! Process reset.", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
gtp_recovery_reset(client);
}
else
#endif
{
gtp_reset_guitar(client, 10);
}
}
return ret;
}
/*******************************************************
Function:
i2c read twice, compare the results
Input:
client: i2c device
addr: operate address
rxbuf: read data to store, if compare successful
len: bytes to read
Output:
FAIL: read failed
SUCCESS: read successful
*********************************************************/
s32 gtp_i2c_read_dbl_check(struct i2c_client *client, u16 addr, u8 *rxbuf, int len)
{
u8 buf[16] = {0};
u8 confirm_buf[16] = {0};
u8 retry = 0;
while (retry++ < 3)
{
memset(buf, 0xAA, 16);
buf[0] = (u8)(addr >> 8);
buf[1] = (u8)(addr & 0xFF);
gtp_i2c_read(client, buf, len + 2);
memset(confirm_buf, 0xAB, 16);
confirm_buf[0] = (u8)(addr >> 8);
confirm_buf[1] = (u8)(addr & 0xFF);
gtp_i2c_read(client, confirm_buf, len + 2);
if (!memcmp(buf, confirm_buf, len+2))
{
memcpy(rxbuf, confirm_buf+2, len);
return SUCCESS;
}
}
GTP_ERROR("I2C read 0x%04X, %d bytes, double check failed!", addr, len);
return FAIL;
}
/*******************************************************
Function:
Send config.
Input:
client: i2c device.
Output:
result of i2c write operation.
1: succeed, otherwise: failed
*********************************************************/
s32 gtp_send_cfg(struct i2c_client *client)
{
s32 ret = 2;
#if GTP_DRIVER_SEND_CFG
s32 retry = 0;
struct goodix_ts_data *ts = i2c_get_clientdata(client);
if (ts->fixed_cfg)
{
GTP_INFO("Ic fixed config, no config sent!");
return 0;
}
else if (ts->pnl_init_error)
{
GTP_INFO("Error occured in init_panel, no config sent");
return 0;
}
GTP_INFO("Driver send config.");
for (retry = 0; retry < 5; retry++)
{
ret = gtp_i2c_write(client, config , GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH);
if (ret > 0)
{
break;
}
}
#endif
return ret;
}
/*******************************************************
Function:
Disable irq function
Input:
ts: goodix i2c_client private data
Output:
None.
*********************************************************/
void gtp_irq_disable(struct goodix_ts_data *ts)
{
unsigned long irqflags;
GTP_DEBUG_FUNC();
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (!ts->irq_is_disable)
{
ts->irq_is_disable = 1;
disable_irq_nosync(ts->client->irq);
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
/*******************************************************
Function:
Enable irq function
Input:
ts: goodix i2c_client private data
Output:
None.
*********************************************************/
void gtp_irq_enable(struct goodix_ts_data *ts)
{
unsigned long irqflags = 0;
GTP_DEBUG_FUNC();
//printk("%s\n", __func__);
spin_lock_irqsave(&ts->irq_lock, irqflags);
if (ts->irq_is_disable)
{
//printk("call enable_irq\n");
enable_irq(ts->client->irq);
ts->irq_is_disable = 0;
}
spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}
/*******************************************************
Function:
Report touch point event
Input:
ts: goodix i2c_client private data
id: trackId
x: input x coordinate
y: input y coordinate
w: input pressure
Output:
None.
*********************************************************/
static void gtp_touch_down(struct goodix_ts_data* ts,s32 id,s32 x,s32 y,s32 w)
{
#if GTP_CHANGE_X2Y
GTP_SWAP(x, y);
#endif
#if GTP_CHANGE_ROTATE180
GTP_ROTATE(x, y, ts->abs_x_max, ts->abs_y_max);
#endif
//TNN, sce case
// x = ts->abs_x_max - x;
// y = ts->abs_y_max - y;
#if GTP_ICS_SLOT_REPORT
input_mt_slot(ts->input_dev, id);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
#else
#ifdef GZSD_LINUX
x = GTP_WARP_X(GTP_MAX_WIDTH,x);
y = GTP_WARP_Y(GTP_MAX_HEIGHT,y);
input_report_abs(ts->input_dev, ABS_X, x);
input_report_abs(ts->input_dev, ABS_Y, y);
input_report_abs(ts->input_dev, ABS_PRESSURE, 1);
input_report_key(ts->input_dev, BTN_TOUCH, 1);
input_sync(ts->input_dev);
//GTP_DEBUG("ID:%d, X:%d, Y:%d, W:%d", id, x, 480-y, w);
ts_evt_add(x,480-y,1);
msleep(5);
queue_work(goodix_wq, &ts->work);
#else
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, y);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, id);
input_mt_sync(ts->input_dev);
#endif
#endif
//GTP_DEBUG("ID:%d, X:%d, Y:%d, W:%d", id, x, y, w);
}
/*******************************************************
Function:
Report touch release event
Input:
ts: goodix i2c_client private data
Output:
None.
*********************************************************/
static void gtp_touch_up(struct goodix_ts_data* ts, s32 id)
{
#if GTP_ICS_SLOT_REPORT
input_mt_slot(ts->input_dev, id);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1);
GTP_DEBUG("Touch id[%2d] release!", id);
#else
#ifdef GZSD_LINUX
input_report_abs(ts->input_dev, ABS_PRESSURE, 0);
ts_evt_add(0,0,0);
//input_report_key(ts->input_dev, BTN_TOUCH, 0);
#else
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0);
input_mt_sync(ts->input_dev);
#endif
#endif
}
static irqreturn_t ts_ts_isr(int irq, void *dev_id)
{
struct ts_i2c_data *tsdata = (struct ts_i2c_data *)dev_id;
disable_irq_nosync(irq);
ts_evt_clear();
queue_work(ts_wq, &tsdata->work.work);
return IRQ_HANDLED;
}
static void ts_poscheck(struct work_struct *work)
{
struct ts_i2c_data *tsdata = container_of(work,struct ts_i2c_data,work.work);
int ret;
int num;
if(gpio_get_value(GPIO_INT)) {
msleep(5);
if(gpio_get_value(GPIO_INT)) {
ts_evt_add(0,0,0);
enable_irq(tsdata->irq);
} else
goto TS_READ;
}
else {
TS_READ:
ret = i2c_smbus_read_i2c_block_data(tsdata->client, 0, sizeof(buf), buf);
num = buf[2] & 0x07;
if (num == 1) {
posx[0] = (s16)(buf[3] & 0x0F)<<8 | (s16)buf[4];
posy[0] = (s16)(buf[5] & 0x0F)<<8 | (s16)buf[6];
ts_evt_add((unsigned long)posx[0],(unsigned long)posy[0],1);
}
else
ts_evt_add(0,0,0);
msleep(5);
queue_work(ts_wq, &tsdata->work.work);
}
}
/*******************************************************
Function:
Goodix touchscreen work function
Input:
work: work struct of goodix_workqueue
Output:
None.
*********************************************************/
static void goodix_ts_work_func(struct work_struct *work)
{
u8 end_cmd[3] = {GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0};
u8 point_data[2 + 1 + 8 * GTP_MAX_TOUCH + 1]={GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF};
u8 touch_num = 0;
u8 finger = 0;
static u16 pre_touch = 0;
static u8 pre_key = 0;
#if GTP_WITH_PEN
static u8 pre_pen = 0;
#endif
u8 key_value = 0;
u8* coor_data = NULL;
s32 input_x = 0;
s32 input_y = 0;
s32 input_w = 0;
s32 id = 0;
s32 i = 0;
s32 ret = -1;
struct goodix_ts_data *ts = NULL;
u8 p_main_clk[6] = {71,71,71,71,71,157};
u8 p_bak_ref[276]={0};
p_bak_ref[275]=1;
#if GTP_COMPATIBLE_MODE
u8 rqst_buf[3] = {0x80, 0x43}; // for GT9XXF
#endif
#if GTP_SLIDE_WAKEUP
u8 doze_buf[3] = {0x81, 0x4B};
#endif
GTP_DEBUG_FUNC();
//printk("+%s\n",__func__);
ts = container_of(work, struct goodix_ts_data, work);
if (ts->enter_update)
{
return;
}
#if GTP_SLIDE_WAKEUP
if (DOZE_ENABLED == doze_status)
{
ret = gtp_i2c_read(i2c_connect_client, doze_buf, 3);
GTP_DEBUG("0x814B = 0x%02X", doze_buf[2]);
if (ret > 0)
{
if (doze_buf[2] == 0xAA)
{
GTP_INFO("Forward slide to light up the screen!");
doze_status = DOZE_WAKEUP;
input_report_key(ts->input_dev, KEY_POWER, 1);
input_sync(ts->input_dev);
input_report_key(ts->input_dev, KEY_POWER, 0);
input_sync(ts->input_dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
}
else if (doze_buf[2] == 0xBB)
{
GTP_INFO("Backward slide to light up the screen!");
doze_status = DOZE_WAKEUP;
input_report_key(ts->input_dev, KEY_POWER, 1);
input_sync(ts->input_dev);
input_report_key(ts->input_dev, KEY_POWER, 0);
input_sync(ts->input_dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
}
else if (0xC0 == (doze_buf[2] & 0xC0))
{
GTP_INFO("Double click to light up the screen!");
doze_status = DOZE_WAKEUP;
input_report_key(ts->input_dev, KEY_POWER, 1);
input_sync(ts->input_dev);
input_report_key(ts->input_dev, KEY_POWER, 0);
input_sync(ts->input_dev);
// clear 0x814B
doze_buf[2] = 0x00;
gtp_i2c_write(i2c_connect_client, doze_buf, 3);
}
else
{
gtp_enter_doze(ts);
}
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
return;
}
#endif
ret = gtp_i2c_read(ts->client, point_data, 12);
if (ret < 0)
{
GTP_ERROR("I2C transfer error. errno:%d\n ", ret);
goto exit_work_func;
}
finger = point_data[GTP_ADDR_LENGTH];
#if GTP_COMPATIBLE_MODE
// GT9XXF
if ((finger == 0x00) && (CHIP_TYPE_GT9F == ts->chip_type)) // request arrived
{
ret = gtp_i2c_read(ts->client, rqst_buf, 3);
if (ret < 0)
{
GTP_ERROR("Read request status error!");
goto exit_work_func;
}
switch (rqst_buf[2] & 0x0F)
{
case GTP_RQST_CONFIG:
GTP_INFO("Request for config.");
//for(i=0;i<242;i++)
//if((i%16)==0)
// GTP_INFO("0x%x\r", config[i-1]);
//else
//GTP_INFO("0x%x", config[i]);
ret = gtp_send_cfg(ts->client);
if (ret < 0)
{
GTP_ERROR("Request for config unresponded!");
}
else
{
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
//GTP_INFO("Request for config responded!");
}
break;
case GTP_RQST_BAK_REF:
GTP_INFO("Request for backup reference.");
ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_SEND);
if (SUCCESS == ret)
{
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
GTP_INFO("Request for backup reference responded!");
}
else
{
GTP_ERROR("Requeset for backup reference unresponed!");
}
break;
case GTP_RQST_RESET:
GTP_INFO("Request for reset.");
gtp_recovery_reset(ts->client);
break;
case GTP_RQST_MAIN_CLOCK:
//break;
i2c_write_bytes(ts->client, GTP_REG_MAIN_CLK, p_main_clk, 6);
ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
break;
GTP_INFO("Request for main clock.");
ts->rqst_processing = 1;
ret = gtp_main_clk_proc(ts);
if (FAIL == ret)
{
GTP_ERROR("Request for main clock unresponded!");
}
else
{
GTP_INFO("Request for main clock responded!");
rqst_buf[2] = GTP_RQST_RESPONDED;
gtp_i2c_write(ts->client, rqst_buf, 3);
ts->rqst_processing = 0;
ts->clk_chk_fs_times = 0;
}
break;
case GTP_RQST_IDLE:
default:
break;
}
}
#endif
if((finger & 0x80) == 0)
{
goto exit_work_func;
}
touch_num = finger & 0x0f;
if (touch_num > GTP_MAX_TOUCH)
{
goto exit_work_func;
}
if (touch_num > 1)
{
u8 buf[8 * GTP_MAX_TOUCH] = {(GTP_READ_COOR_ADDR + 10) >> 8, (GTP_READ_COOR_ADDR + 10) & 0xff};
ret = gtp_i2c_read(ts->client, buf, 2 + 8 * (touch_num - 1));
memcpy(&point_data[12], &buf[2], 8 * (touch_num - 1));
}
#if GTP_HAVE_TOUCH_KEY
key_value = point_data[3 + 8 * touch_num];
if(key_value || pre_key)
{
for (i = 0; i < GTP_MAX_KEY_NUM; i++)
{
#if GTP_DEBUG_ON
for (ret = 0; ret < 4; ++ret)
{
if (key_codes[ret] == touch_key_array[i])
{
GTP_DEBUG("Key: %s %s", key_names[ret], (key_value & (0x01 << i)) ? "Down" : "Up");
break;
}
}
#endif
input_report_key(ts->input_dev, touch_key_array[i], key_value & (0x01< }
touch_num = 0;
pre_touch = 0;
}
#endif
pre_key = key_value;
//GTP_DEBUG("pre_touch:%02x, finger:%02x.", pre_touch, finger);
#if GTP_ICS_SLOT_REPORT
#if GTP_WITH_PEN
if (pre_pen && (touch_num == 0))
{
GTP_DEBUG("Pen touch UP(Slot)!");
input_report_key(ts->input_dev, BTN_TOOL_PEN, 0);
input_mt_slot(ts->input_dev, 5);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, -1);
pre_pen = 0;
}
#endif
if (pre_touch || touch_num)
{
s32 pos = 0;
u16 touch_index = 0;
u8 report_num = 0;
coor_data = &point_data[3];
if(touch_num)
{
id = coor_data[pos] & 0x0F;
#if GTP_WITH_PEN
id = coor_data[pos];
if ((id & 0x80))
{
GTP_DEBUG("Pen touch DOWN(Slot)!");
input_x = coor_data[pos + 1] | (coor_data[pos + 2] << 8);
input_y = coor_data[pos + 3] | (coor_data[pos + 4] << 8);
input_w = coor_data[pos + 5] | (coor_data[pos + 6] << 8);
input_report_key(ts->input_dev, BTN_TOOL_PEN, 1);
input_mt_slot(ts->input_dev, 5);
input_report_abs(ts->input_dev, ABS_MT_TRACKING_ID, 5);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, input_x);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, input_y);
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, input_w);
GTP_DEBUG("Pen/Stylus: (%d, %d)[%d]", input_x, input_y, input_w);
pre_pen = 1;
pre_touch = 0;
}
#endif
touch_index |= (0x01< }
GTP_DEBUG("id = %d,touch_index = 0x%x, pre_touch = 0x%x\n",id, touch_index,pre_touch);
for (i = 0; i < GTP_MAX_TOUCH; i++)
{
#if GTP_WITH_PEN
if (pre_pen == 1)
{
break;
}
#endif
if ((touch_index & (0x01< {
input_x = coor_data[pos + 1] | (coor_data[pos + 2] << 8);
input_y = coor_data[pos + 3] | (coor_data[pos + 4] << 8);
input_w = coor_data[pos + 5] | (coor_data[pos + 6] << 8);
gtp_touch_down(ts, id, input_x, input_y, input_w);
pre_touch |= 0x01 << i;
report_num++;
if (report_num < touch_num)
{
pos += 8;
id = coor_data[pos] & 0x0F;
touch_index |= (0x01< }
}
else
{
gtp_touch_up(ts, i);
pre_touch &= ~(0x01 << i);
}
}
}
#else
input_report_key(ts->input_dev, BTN_TOUCH, (touch_num || key_value));
if (touch_num)
{
for (i = 0; i < touch_num; i++)
{
coor_data = &point_data[i * 8 + 3];
id = coor_data[0] & 0x0F;
input_x = coor_data[1] | (coor_data[2] << 8);
input_y = coor_data[3] | (coor_data[4] << 8);
input_w = coor_data[5] | (coor_data[6] << 8);
#if GTP_WITH_PEN
id = coor_data[0];
if (id & 0x80)
{
GTP_DEBUG("Pen touch DOWN!");
input_report_key(ts->input_dev, BTN_TOOL_PEN, 1);
pre_pen = 1;
id = 0;
}
#endif
gtp_touch_down(ts, id, input_x, input_y, input_w);
}
}
else if (pre_touch)
{
#if GTP_WITH_PEN
if (pre_pen == 1)
{
GTP_DEBUG("Pen touch UP!");
input_report_key(ts->input_dev, BTN_TOOL_PEN, 0);
pre_pen = 0;
}
#endif
// GTP_DEBUG("Touch Release!");
gtp_touch_up(ts, 0);
}
pre_touch = touch_num;
#endif
input_sync(ts->input_dev);
exit_work_func:
if(!ts->gtp_rawdiff_mode)
{
ret = gtp_i2c_write(ts->client, end_cmd, 3);
if (ret < 0)
{
GTP_INFO("I2C write end_cmd error!");
}
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
}
/*******************************************************
Function:
Timer interrupt service routine for polling mode.
Input:
timer: timer struct pointer
Output:
Timer work mode.
HRTIMER_NORESTART: no restart mode
*********************************************************/
static enum hrtimer_restart goodix_ts_timer_handler(struct hrtimer *timer)
{
struct goodix_ts_data *ts = container_of(timer, struct goodix_ts_data, timer);
GTP_DEBUG_FUNC();
queue_work(goodix_wq, &ts->work);
hrtimer_start(&ts->timer, ktime_set(0, (GTP_POLL_TIME+6)*1000000), HRTIMER_MODE_REL);
return HRTIMER_NORESTART;
}
/*******************************************************
Function:
External interrupt service routine for interrupt mode.
Input:
irq: interrupt number.
dev_id: private data pointer
Output:
Handle Result.
IRQ_HANDLED: interrupt handled successfully
*********************************************************/
static irqreturn_t goodix_ts_irq_handler(int irq, void *dev_id)
{
struct goodix_ts_data *ts = dev_id;
GTP_DEBUG_FUNC();
//printk("+%s\n", __func__);
gtp_irq_disable(ts);
queue_work(goodix_wq, &ts->work);
return IRQ_HANDLED;
}
/*******************************************************
Function:
Synchronization.
Input:
ms: synchronization time in millisecond.
Output:
None.
*******************************************************/
void gtp_int_sync(s32 ms)
{
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
msleep(ms);
GTP_GPIO_AS_INT(GTP_INT_PORT);
}
/*******************************************************
Function:
Reset chip.
Input:
ms: reset time in millisecond
Output:
None.
*******************************************************/
void gtp_reset_guitar(struct i2c_client *client, s32 ms)
{
#if GTP_COMPATIBLE_MODE
struct goodix_ts_data *ts = i2c_get_clientdata(client);
#endif
GTP_DEBUG_FUNC();
GTP_INFO("Guitar reset");
#if 1 //for TNN
GTP_GPIO_OUTPUT(GTP_RST_PORT, 0); // begin select I2C slave addr
msleep(ms); // T2: > 10ms
#endif
// HIGH: 0x28/0x29, LOW: 0xBA/0xBB
GTP_GPIO_OUTPUT(GTP_INT_PORT, client->addr == 0x14);
#if 1 //for TNN
msleep(2); // T3: > 100us
GTP_GPIO_OUTPUT(GTP_RST_PORT, 1);
msleep(6); // T4: > 5ms
#if 0
printk("GTP_RST_PORT is high\n");
while(1)
{
msleep(2); // T3: > 100us
GTP_GPIO_OUTPUT(GTP_RST_PORT, 0);
msleep(2); // T3: > 100us
GTP_GPIO_OUTPUT(GTP_RST_PORT, 1);
}
#endif
//GTP_GPIO_AS_INPUT(GTP_RST_PORT); // end select I2C slave addr
#endif
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
return;
}
#endif
gtp_int_sync(50);
#if GTP_ESD_PROTECT
gtp_init_ext_watchdog(client);
#endif
}
#if GTP_SLIDE_WAKEUP
/*******************************************************
Function:
Enter doze mode for sliding wakeup.
Input:
ts: goodix tp private data
Output:
1: succeed, otherwise failed
*******************************************************/
static s8 gtp_enter_doze(struct goodix_ts_data *ts)
{
s8 ret = -1;
s8 retry = 0;
u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 8};
GTP_DEBUG_FUNC();
#if GTP_DBL_CLK_WAKEUP
i2c_control_buf[2] = 0x09;
#endif
gtp_irq_disable(ts);
GTP_DEBUG("Entering doze mode.");
while(retry++ < 5)
{
i2c_control_buf[0] = 0x80;
i2c_control_buf[1] = 0x46;
ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
if (ret < 0)
{
GTP_DEBUG("failed to set doze flag into 0x8046, %d", retry);
continue;
}
i2c_control_buf[0] = 0x80;
i2c_control_buf[1] = 0x40;
ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
if (ret > 0)
{
doze_status = DOZE_ENABLED;
GTP_INFO("GTP has been working in doze mode!");
gtp_irq_enable(ts);
return ret;
}
msleep(10);
}
GTP_ERROR("GTP send doze cmd failed.");
gtp_irq_enable(ts);
return ret;
}
#else
/*******************************************************
Function:
Enter sleep mode.
Input:
ts: private data.
Output:
Executive outcomes.
1: succeed, otherwise failed.
*******************************************************/
static s8 gtp_enter_sleep(struct goodix_ts_data * ts)
{
s8 ret = -1;
s8 retry = 0;
u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP, 5};
#if GTP_COMPATIBLE_MODE
u8 status_buf[3] = {0x80, 0x44};
#endif
GTP_DEBUG_FUNC();
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
// GT9XXF: host interact with ic
ret = gtp_i2c_read(ts->client, status_buf, 3);
if (ret < 0)
{
GTP_ERROR("failed to get backup-reference status");
}
if (status_buf[2] & 0x80)
{
ret = gtp_bak_ref_proc(ts, GTP_BAK_REF_STORE);
if (FAIL == ret)
{
GTP_ERROR("failed to store bak_ref");
}
}
}
#endif
GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
msleep(5);
while(retry++ < 5)
{
ret = gtp_i2c_write(ts->client, i2c_control_buf, 3);
if (ret > 0)
{
GTP_INFO("GTP enter sleep!");
return ret;
}
msleep(10);
}
GTP_ERROR("GTP send sleep cmd failed.");
return ret;
}
#endif
/*******************************************************
Function:
Wakeup from sleep.
Input:
ts: private data.
Output:
Executive outcomes.
>0: succeed, otherwise: failed.
*******************************************************/
static s8 gtp_wakeup_sleep(struct goodix_ts_data * ts)
{
u8 retry = 0;
s8 ret = -1;
GTP_DEBUG_FUNC();
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
u8 opr_buf[3] = {0x41, 0x80};
GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);
msleep(5);
for (retry = 0; retry < 20; ++retry)
{
// hold ss51 & dsp
opr_buf[2] = 0x0C;
ret = gtp_i2c_write(ts->client, opr_buf, 3);
if (FAIL == ret)
{
GTP_ERROR("failed to hold ss51 & dsp!");
continue;
}
opr_buf[2] = 0x00;
ret = gtp_i2c_read(ts->client, opr_buf, 3);
if (FAIL == ret)
{
GTP_ERROR("failed to get ss51 & dsp status!");
continue;
}
if (0x0C != opr_buf[2])
{
GTP_DEBUG("ss51 & dsp not been hold, %d", retry+1);
continue;
}
GTP_DEBUG("ss51 & dsp confirmed hold");
ret = gtp_fw_startup(ts->client);
if (FAIL == ret)
{
GTP_ERROR("failed to startup GT9XXF, process recovery");
gtp_esd_recovery(ts->client);
}
break;
}
if (retry >= 10)
{
GTP_ERROR("failed to wakeup, processing esd recovery");
gtp_esd_recovery(ts->client);
}
else
{
GTP_INFO("GT9XXF gtp wakeup success");
}
return ret;
}
#endif
#if GTP_POWER_CTRL_SLEEP
while(retry++ < 5)
{
gtp_reset_guitar(ts->client, 20);
GTP_INFO("GTP wakeup sleep.");
return 1;
}
#else
while(retry++ < 10)
{
#if GTP_SLIDE_WAKEUP
if (DOZE_WAKEUP != doze_status) // wakeup not by slide
{
GTP_DEBUG("wakeup by power, reset guitar");
doze_status = DOZE_DISABLED;
gtp_irq_disable(ts);
gtp_reset_guitar(ts->client, 10);
gtp_irq_enable(ts);
}
else // wakeup by slide
{
GTP_DEBUG("wakeup by slide/double-click, no reset guitar");
doze_status = DOZE_DISABLED;
#if GTP_ESD_PROTECT
gtp_init_ext_watchdog(ts->client);
#endif
}
#else
if (chip_gt9xxs == 1)
{
gtp_reset_guitar(ts->client, 10);
}
else
{
GTP_GPIO_OUTPUT(GTP_INT_PORT, 1);
msleep(5);
}
#endif
ret = gtp_i2c_test(ts->client);
if (ret > 0)
{
GTP_INFO("GTP wakeup sleep.");
#if (!GTP_SLIDE_WAKEUP)
if (chip_gt9xxs == 0)
{
gtp_int_sync(25);
#if GTP_ESD_PROTECT
gtp_init_ext_watchdog(ts->client);
#endif
}
#endif
return ret;
}
gtp_reset_guitar(ts->client, 20);
}
#endif
GTP_ERROR("GTP wakeup sleep failed.");
return ret;
}
#if GTP_DRIVER_SEND_CFG
static s32 gtp_get_info(struct goodix_ts_data *ts)
{
u8 opr_buf[6] = {0};
s32 ret = 0;
opr_buf[0] = (u8)((GTP_REG_CONFIG_DATA+1) >> 8);
opr_buf[1] = (u8)((GTP_REG_CONFIG_DATA+1) & 0xFF);
ret = gtp_i2c_read(ts->client, opr_buf, 6);
if (ret < 0)
{
return FAIL;
}
ts->abs_x_max = (opr_buf[3] << 8) + opr_buf[2];
ts->abs_y_max = (opr_buf[5] << 8) + opr_buf[4];
opr_buf[0] = (u8)((GTP_REG_CONFIG_DATA+6) >> 8);
opr_buf[1] = (u8)((GTP_REG_CONFIG_DATA+6) & 0xFF);
ret = gtp_i2c_read(ts->client, opr_buf, 3);
if (ret < 0)
{
return FAIL;
}
ts->int_trigger_type = opr_buf[2] & 0x03;
GTP_INFO("X_MAX = %d, Y_MAX = %d, TRIGGER = 0x%02x",
ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
return SUCCESS;
}
#endif
/*******************************************************
Function:
Initialize gtp.
Input:
ts: goodix private data
Output:
Executive outcomes.
0: succeed, otherwise: failed
*******************************************************/
static s32 gtp_init_panel(struct goodix_ts_data *ts)
{
s32 ret = -1;
#if GTP_DRIVER_SEND_CFG
s32 i = 0;
u8 check_sum = 0;
u8 opr_buf[16] = {0};
u8 sensor_id = 0;
u8 cfg_info_group1[] = CTP_CFG_GROUP1;
u8 cfg_info_group2[] = CTP_CFG_GROUP2;
u8 cfg_info_group3[] = CTP_CFG_GROUP3;
u8 cfg_info_group4[] = CTP_CFG_GROUP4;
u8 cfg_info_group5[] = CTP_CFG_GROUP5;
u8 cfg_info_group6[] = CTP_CFG_GROUP6;
u8 *send_cfg_buf[] = {cfg_info_group1, cfg_info_group2, cfg_info_group3,
cfg_info_group4, cfg_info_group5, cfg_info_group6};
u8 cfg_info_len[] = { CFG_GROUP_LEN(cfg_info_group1),
CFG_GROUP_LEN(cfg_info_group2),
CFG_GROUP_LEN(cfg_info_group3),
CFG_GROUP_LEN(cfg_info_group4),
CFG_GROUP_LEN(cfg_info_group5),
CFG_GROUP_LEN(cfg_info_group6)};
GTP_DEBUG_FUNC();
GTP_DEBUG("Config Groups\' Lengths: %d, %d, %d, %d, %d, %d",
cfg_info_len[0], cfg_info_len[1], cfg_info_len[2], cfg_info_len[3],
cfg_info_len[4], cfg_info_len[5]);
// memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
// memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[0], 228);
//gtp_send_cfg(ts->client);
// return 0;
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
ts->fw_error = 0;
}
else
#endif
{
ret = gtp_i2c_read_dbl_check(ts->client, 0x41E4, opr_buf, 1);
if (SUCCESS == ret)
{
if (opr_buf[0] != 0xBE)
{
// ts->fw_error = 1;
//GTP_ERROR("Firmware error, no config sent!");
GTP_ERROR("Firmware error, no config sent! 0x%x",opr_buf[0]);
// return -1;
}
}
}
if ((!cfg_info_len[1]) && (!cfg_info_len[2]) &&
(!cfg_info_len[3]) && (!cfg_info_len[4]) &&
(!cfg_info_len[5]))
{
sensor_id = 0;
}
else
{
#if GTP_COMPATIBLE_MODE
msleep(50);
#endif
ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_SENSOR_ID, &sensor_id, 1);
if (SUCCESS == ret)
{
if (sensor_id >= 0x06)
{
GTP_ERROR("Invalid sensor_id(0x%02X), No Config Sent!", sensor_id);
ts->pnl_init_error = 1;
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
return -1;
}
else
#endif
{
gtp_get_info(ts);
}
return 0;
}
}
else
{
GTP_ERROR("Failed to get sensor_id, No config sent!");
ts->pnl_init_error = 1;
return -1;
}
GTP_INFO("Sensor_ID: %d", sensor_id);
}
ts->gtp_cfg_len = cfg_info_len[sensor_id];
GTP_INFO("CTP_CONFIG_GROUP%d used, config length: %d", sensor_id + 1, ts->gtp_cfg_len);
if (ts->gtp_cfg_len < GTP_CONFIG_MIN_LENGTH)
{
GTP_ERROR("Config Group%d is INVALID CONFIG GROUP(Len: %d)! NO Config Sent! You need to check you header file CFG_GROUP section!", sensor_id+1, ts->gtp_cfg_len);
ts->pnl_init_error = 1;
return -1;
}
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
ts->fixed_cfg = 0;
}
else
#endif
{
ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CONFIG_DATA, &opr_buf[0], 1);
if (ret == SUCCESS)
{
GTP_DEBUG("CFG_GROUP%d Config Version: %d, 0x%02X; IC Config Version: %d, 0x%02X", sensor_id+1,
send_cfg_buf[sensor_id][0], send_cfg_buf[sensor_id][0], opr_buf[0], opr_buf[0]);
if (opr_buf[0] < 90)
{
grp_cfg_version = send_cfg_buf[sensor_id][0]; // backup group config version
send_cfg_buf[sensor_id][0] = 0x00;
ts->fixed_cfg = 0;
}
else // treated as fixed config, not send config
{
GTP_INFO("Ic fixed config with config version(%d, 0x%02X)", opr_buf[0], opr_buf[0]);
ts->fixed_cfg = 1;
gtp_get_info(ts);
return 0;
}
}
else
{
GTP_ERROR("Failed to get ic config version!No config sent!");
return -1;
}
}
memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
memcpy(&config[GTP_ADDR_LENGTH], send_cfg_buf[sensor_id], ts->gtp_cfg_len);
#if GTP_CUSTOM_CFG
config[RESOLUTION_LOC] = (u8)GTP_MAX_WIDTH;
config[RESOLUTION_LOC + 1] = (u8)(GTP_MAX_WIDTH>>8);
config[RESOLUTION_LOC + 2] = (u8)GTP_MAX_HEIGHT;
config[RESOLUTION_LOC + 3] = (u8)(GTP_MAX_HEIGHT>>8);
if (GTP_INT_TRIGGER == 0) //RISING
{
config[TRIGGER_LOC] &= 0xfe;
}
else if (GTP_INT_TRIGGER == 1) //FALLING
{
config[TRIGGER_LOC] |= 0x01;
}
#endif // GTP_CUSTOM_CFG
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++)
{
check_sum += config[i];
}
config[ts->gtp_cfg_len] = (~check_sum) + 1;
#else // driver not send config
ts->gtp_cfg_len = GTP_CONFIG_MAX_LENGTH;
ret = gtp_i2c_read(ts->client, config, ts->gtp_cfg_len + GTP_ADDR_LENGTH);
if (ret < 0)
{
GTP_ERROR("Read Config Failed, Using Default Resolution & INT Trigger!");
ts->abs_x_max = GTP_MAX_WIDTH;
ts->abs_y_max = GTP_MAX_HEIGHT;
ts->int_trigger_type = GTP_INT_TRIGGER;
}
#endif // GTP_DRIVER_SEND_CFG
if ((ts->abs_x_max == 0) && (ts->abs_y_max == 0))
{
ts->abs_x_max = (config[RESOLUTION_LOC + 1] << 8) + config[RESOLUTION_LOC];
ts->abs_y_max = (config[RESOLUTION_LOC + 3] << 8) + config[RESOLUTION_LOC + 2];
ts->int_trigger_type = (config[TRIGGER_LOC]) & 0x03;
}
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
u8 sensor_num = 0;
u8 driver_num = 0;
u8 have_key = 0;
have_key = (config[GTP_REG_HAVE_KEY - GTP_REG_CONFIG_DATA + 2] & 0x01);
if (1 == ts->is_950)
{
driver_num = config[GTP_REG_MATRIX_DRVNUM - GTP_REG_CONFIG_DATA + 2];
sensor_num = config[GTP_REG_MATRIX_SENNUM - GTP_REG_CONFIG_DATA + 2];
if (have_key)
{
driver_num--;
}
ts->bak_ref_len = (driver_num * (sensor_num - 1) + 2) * 2 * 6;
}
else
{
driver_num = (config[CFG_LOC_DRVA_NUM] & 0x1F) + (config[CFG_LOC_DRVB_NUM]&0x1F);
if (have_key)
{
driver_num--;
}
sensor_num = (config[CFG_LOC_SENS_NUM] & 0x0F) + ((config[CFG_LOC_SENS_NUM] >> 4) & 0x0F);
ts->bak_ref_len = (driver_num * (sensor_num - 2) + 2) * 2;
}
GTP_INFO("Drv * Sen: %d * %d(key: %d), X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x",
driver_num, sensor_num, have_key, ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
return 0;
}
else
#endif
{
#if GTP_DRIVER_SEND_CFG
for(i=1;i<=228;i++)
if((i%16)==0)
GTP_INFO("0x%x\r", config[i]);
else
GTP_INFO("0x%x", config[i]);
ret = gtp_send_cfg(ts->client);
if (ret < 0)
{
GTP_ERROR("Send config error.");
}
// set config version to CTP_CFG_GROUP, for resume to send config
config[GTP_ADDR_LENGTH] = grp_cfg_version;
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < ts->gtp_cfg_len; i++)
{
check_sum += config[i];
}
config[ts->gtp_cfg_len] = (~check_sum) + 1;
#endif
GTP_INFO("X_MAX: %d, Y_MAX: %d, TRIGGER: 0x%02x", ts->abs_x_max,ts->abs_y_max,ts->int_trigger_type);
}
msleep(10);
return 0;
}
/*******************************************************
Function:
Read chip version.
Input:
client: i2c device
version: buffer to keep ic firmware version
Output:
read operation return.
2: succeed, otherwise: failed
*******************************************************/
s32 gtp_read_version(struct i2c_client *client, u16* version)
{
s32 ret = -1;
u8 buf[8] = {GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff};
GTP_DEBUG_FUNC();
ret = gtp_i2c_read(client, buf, sizeof(buf));
if (ret < 0)
{
GTP_ERROR("GTP read version failed");
return ret;
}
if (version)
{
*version = (buf[7] << 8) | buf[6];
}
if (buf[5] == 0x00)
{
GTP_INFO("IC Version: %c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[7], buf[6]);
}
else
{
if (buf[5] == 'S' || buf[5] == 's')
{
chip_gt9xxs = 1;
}
GTP_INFO("IC Version: %c%c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[5], buf[7], buf[6]);
}
return ret;
}
/*******************************************************
Function:
I2c test Function.
Input:
client:i2c client.
Output:
Executive outcomes.
2: succeed, otherwise failed.
*******************************************************/
static s8 gtp_i2c_test(struct i2c_client *client)
{
u8 test[3] = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
u8 retry = 0;
s8 ret = -1;
GTP_DEBUG_FUNC();
while(retry++ < 5)
{
ret = gtp_i2c_read(client, test, 3);
if (ret > 0)
{
return ret;
}
GTP_ERROR("GTP i2c test failed time %d.",retry);
msleep(10);
}
return ret;
}
/*******************************************************
Function:
Request gpio(INT & RST) ports.
Input:
ts: private data.
Output:
Executive outcomes.
>= 0: succeed, < 0: failed
*******************************************************/
static s8 gtp_request_io_port(struct goodix_ts_data *ts)
{
s32 ret = 0;
GTP_DEBUG_FUNC();
ret = GTP_GPIO_REQUEST(GTP_INT_PORT, "GTP_INT_IRQ");
if (ret < 0)
{
GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d", (s32)GTP_INT_PORT, ret);
ret = -ENODEV;
}
else
{
GTP_GPIO_AS_INT(GTP_INT_PORT);
ts->client->irq = GTP_INT_IRQ;
}
// GTP_GPIO_OUTPUT(GTP_INT_PORT, 0);
#if 1 //for TNN
ret = GTP_GPIO_REQUEST(GTP_RST_PORT, "GTP_RST_PORT");
if (ret < 0)
{
GTP_ERROR("Failed to request GPIO:%d, ERRNO:%d",(s32)GTP_RST_PORT,ret);
ret = -ENODEV;
}
//GTP_GPIO_AS_INPUT(GTP_RST_PORT);
gtp_reset_guitar(ts->client, 20);
if(ret < 0)
{
GTP_GPIO_FREE(GTP_RST_PORT);
GTP_GPIO_FREE(GTP_INT_PORT);
}
#endif
return ret;
}
/*******************************************************
Function:
Request interrupt.
Input:
ts: private data.
Output:
Executive outcomes.
0: succeed, -1: failed.
*******************************************************/
static s8 gtp_request_irq(struct goodix_ts_data *ts)
{
s32 ret = -1;
const u8 irq_table[] = GTP_IRQ_TAB;
GTP_DEBUG_FUNC();
GTP_DEBUG("INT trigger type:%x", ts->int_trigger_type);
ret = request_irq(ts->client->irq,
goodix_ts_irq_handler,
irq_table[ts->int_trigger_type],
ts->client->name,
ts);
if (ret)
{
GTP_ERROR("Request IRQ failed!ERRNO:%d.", ret);
GTP_GPIO_AS_INPUT(GTP_INT_PORT);
GTP_GPIO_FREE(GTP_INT_PORT);
hrtimer_init(&ts->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
ts->timer.function = goodix_ts_timer_handler;
hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);
return -1;
}
else
{
gtp_irq_disable(ts);
ts->use_irq = 1;
return 0;
}
}
/*******************************************************
Function:
Request input device Function.
Input:
ts:private data.
Output:
Executive outcomes.
0: succeed, otherwise: failed.
*******************************************************/
static s8 gtp_request_input_dev(struct goodix_ts_data *ts)
{
s8 ret = -1;
s8 phys[32];
#if GTP_HAVE_TOUCH_KEY
u8 index = 0;
#endif
GTP_DEBUG_FUNC();
ts->input_dev = input_allocate_device();
if (ts->input_dev == NULL)
{
GTP_ERROR("Failed to allocate input device.");
return -ENOMEM;
}
#ifdef GZSD_LINUX
ts->input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ;
#else
ts->input_dev->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ;
#endif
#if GTP_ICS_SLOT_REPORT
__set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
input_mt_init_slots(ts->input_dev, 16); // in case of "out of memory"
#else
#ifndef GZSD_LINUX
ts->input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
#endif
#endif
#ifndef GZSD_LINUX
__set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
#endif
#if GTP_HAVE_TOUCH_KEY
for (index = 0; index < GTP_MAX_KEY_NUM; index++)
{
input_set_capability(ts->input_dev, EV_KEY, touch_key_array[index]);
}
#endif
#if GTP_SLIDE_WAKEUP
input_set_capability(ts->input_dev, EV_KEY, KEY_POWER);
#endif
#if GTP_WITH_PEN
// pen support
__set_bit(BTN_TOOL_PEN, ts->input_dev->keybit);
__set_bit(INPUT_PROP_DIRECT, ts->input_dev->propbit);
//__set_bit(INPUT_PROP_POINTER, ts->input_dev->propbit);
#endif
#if GTP_CHANGE_X2Y
GTP_SWAP(ts->abs_x_max, ts->abs_y_max);
#endif
#ifdef GZSD_LINUX
input_set_abs_params(ts->input_dev, ABS_X, 0, GTP_MAX_WIDTH, 0, 0);
input_set_abs_params(ts->input_dev, ABS_Y, 0, GTP_MAX_HEIGHT, 0, 0);
input_set_abs_params(ts->input_dev, ABS_PRESSURE, 0, 1, 0, 0);
#else
input_set_abs_params(ts->input_dev, ABS_MT_POSITION_X, 0, ts->abs_x_max, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_POSITION_Y, 0, ts->abs_y_max, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0);
input_set_abs_params(ts->input_dev, ABS_MT_TRACKING_ID, 0, 255, 0, 0);
#endif
sprintf(phys, "input/ts");
ts->input_dev->name = GTP_I2C_NAME;//goodix_ts_name;
ts->input_dev->phys = phys;
ts->input_dev->id.bustype = BUS_I2C;
ts->input_dev->id.vendor = 0xDEAD;
ts->input_dev->id.product = 0xBEEF;
ts->input_dev->id.version = 10427;
ret = input_register_device(ts->input_dev);
if (ret)
{
GTP_ERROR("Register %s input device failed", ts->input_dev->name);
return -ENODEV;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
ts->early_suspend.suspend = goodix_ts_early_suspend;
ts->early_suspend.resume = goodix_ts_late_resume;
register_early_suspend(&ts->early_suspend);
#endif
return 0;
}
//************** For GT9XXF Start *************//
#if GTP_COMPATIBLE_MODE
s32 gtp_fw_startup(struct i2c_client *client)
{
u8 opr_buf[4];
s32 ret = 0;
//init sw WDT
opr_buf[0] = 0xAA;
ret = i2c_write_bytes(client, 0x8041, opr_buf, 1);
if (ret < 0)
{
return FAIL;
}
//release SS51 & DSP
opr_buf[0] = 0x00;
ret = i2c_write_bytes(client, 0x4180, opr_buf, 1);
if (ret < 0)
{
return FAIL;
}
//int sync
gtp_int_sync(25);
//check fw run status
ret = i2c_read_bytes(client, 0x8041, opr_buf, 1);
if (ret < 0)
{
return FAIL;
}
if(0xAA == opr_buf[0])
{
GTP_ERROR("IC works abnormally,startup failed.");
return FAIL;
}
else
{
GTP_INFO("IC works normally, Startup success.");
opr_buf[0] = 0xAA;
i2c_write_bytes(client, 0x8041, opr_buf, 1);
return SUCCESS;
}
}
static s32 gtp_esd_recovery(struct i2c_client *client)
{
s32 retry = 0;
s32 ret = 0;
struct goodix_ts_data *ts;
ts = i2c_get_clientdata(client);
gtp_irq_disable(ts);
GTP_INFO("GT9XXF esd recovery mode");
gtp_reset_guitar(client, 20); // reset & select I2C addr
for (retry = 0; retry < 5; ++retry)
{
ret = gup_fw_download_proc(NULL, GTP_FL_ESD_RECOVERY);
if (FAIL == ret)
{
GTP_ERROR("esd recovery failed %d", retry+1);
continue;
}
ret = gtp_fw_startup(ts->client);
if (FAIL == ret)
{
GTP_ERROR("GT9XXF start up failed %d", retry+1);
continue;
}
break;
}
gtp_irq_enable(ts);
if (retry >= 5)
{
GTP_ERROR("failed to esd recovery");
return FAIL;
}
GTP_INFO("Esd recovery successful");
return SUCCESS;
}
void gtp_recovery_reset(struct i2c_client *client)
{
#if GTP_ESD_PROTECT
gtp_esd_switch(client, SWITCH_OFF);
#endif
GTP_DEBUG_FUNC();
gtp_esd_recovery(client);
#if GTP_ESD_PROTECT
gtp_esd_switch(client, SWITCH_ON);
#endif
}
static s32 gtp_bak_ref_proc(struct goodix_ts_data *ts, u8 mode)
{
s32 ret = 0;
s32 i = 0;
s32 j = 0;
u16 ref_sum = 0;
u16 learn_cnt = 0;
u16 chksum = 0;
s32 ref_seg_len = 0;
s32 ref_grps = 0;
struct file *ref_filp = NULL;
u8 *p_bak_ref;
ret = gup_check_fs_mounted("/data");
if (FAIL == ret)
{
ts->ref_chk_fs_times++;
GTP_DEBUG("Ref check /data times/MAX_TIMES: %d / %d", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);
if (ts->ref_chk_fs_times < GTP_CHK_FS_MNT_MAX)
{
msleep(50);
GTP_INFO("/data not mounted.");
return FAIL;
}
GTP_INFO("check /data mount timeout...");
}
else
{
GTP_INFO("/data mounted!!!(%d/%d)", ts->ref_chk_fs_times, GTP_CHK_FS_MNT_MAX);
}
p_bak_ref = (u8 *)kzalloc(ts->bak_ref_len, GFP_KERNEL);
if (NULL == p_bak_ref)
{
GTP_ERROR("Allocate memory for p_bak_ref failed!");
return FAIL;
}
if (ts->is_950)
{
ref_seg_len = ts->bak_ref_len / 6;
ref_grps = 6;
}
else
{
ref_seg_len = ts->bak_ref_len;
ref_grps = 1;
}
ref_filp = filp_open(GTP_BAK_REF_PATH, O_RDWR | O_CREAT, 0666);
if (IS_ERR(ref_filp))
{
GTP_INFO("%s is unavailable, default backup-reference used", GTP_BAK_REF_PATH);
goto bak_ref_default;
}
switch (mode)
{
case GTP_BAK_REF_SEND:
GTP_INFO("Send backup-reference");
ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
ret = ref_filp->f_op->read(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
if (ret < 0)
{
GTP_ERROR("failed to read bak_ref info from file, sending defualt bak_ref");
goto bak_ref_default;
}
for (j = 0; j < ref_grps; ++j)
{
ref_sum = 0;
for (i = 0; i < (ref_seg_len); i += 2)
{
ref_sum += (p_bak_ref[i + j * ref_seg_len] << 8) + p_bak_ref[i+1 + j * ref_seg_len];
}
learn_cnt = (p_bak_ref[j * ref_seg_len + ref_seg_len -4] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -3]);
chksum = (p_bak_ref[j * ref_seg_len + ref_seg_len -2] << 8) + (p_bak_ref[j * ref_seg_len + ref_seg_len -1]);
GTP_DEBUG("learn count = %d", learn_cnt);
GTP_DEBUG("chksum = %d", chksum);
GTP_DEBUG("ref_sum = 0x%04X", ref_sum & 0xFFFF);
// Sum(1~ref_seg_len) == 1
if (1 != ref_sum)
{
GTP_INFO("wrong chksum for bak_ref, reset to 0x00 bak_ref");
memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);
p_bak_ref[ref_seg_len + j * ref_seg_len - 1] = 0x01;
}
else
{
if (j == (ref_grps - 1))
{
GTP_INFO("backup-reference data in %s used", GTP_BAK_REF_PATH);
}
}
}
GTP_INFO("++++ts->bak_ref_len0x%x ",ts->bak_ref_len);
for( i=0;ibak_ref_len;i++)
GTP_INFO("0x%x ",p_bak_ref[i]);
GTP_INFO("-----ts->bak_ref_len0x%x ",ts->bak_ref_len);
ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
if (FAIL == ret)
{
GTP_ERROR("failed to send bak_ref because of iic comm error");
filp_close(ref_filp, NULL);
return FAIL;
}
break;
case GTP_BAK_REF_STORE:
GTP_INFO("Store backup-reference");
ret = i2c_read_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
if (ret < 0)
{
GTP_ERROR("failed to read bak_ref info, sending default back-reference");
goto bak_ref_default;
}
ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
break;
default:
GTP_ERROR("invalid backup-reference request");
break;
}
filp_close(ref_filp, NULL);
return SUCCESS;
bak_ref_default:
for (j = 0; j < ref_grps; ++j)
{
memset(&p_bak_ref[j * ref_seg_len], 0, ref_seg_len);
p_bak_ref[j * ref_seg_len + ref_seg_len - 1] = 0x01; // checksum = 1
}
ret = i2c_write_bytes(ts->client, GTP_REG_BAK_REF, p_bak_ref, ts->bak_ref_len);
if (!IS_ERR(ref_filp))
{
GTP_INFO("write backup-reference data into %s", GTP_BAK_REF_PATH);
ref_filp->f_op->llseek(ref_filp, 0, SEEK_SET);
ref_filp->f_op->write(ref_filp, (char*)p_bak_ref, ts->bak_ref_len, &ref_filp->f_pos);
filp_close(ref_filp, NULL);
}
if (ret == FAIL)
{
GTP_ERROR("failed to load the default backup reference");
return FAIL;
}
return SUCCESS;
}
static s32 gtp_verify_main_clk(u8 *p_main_clk)
{
u8 chksum = 0;
u8 main_clock = p_main_clk[0];
s32 i = 0;
if (main_clock < 50 || main_clock > 120)
{
return FAIL;
}
for (i = 0; i < 5; ++i)
{
if (main_clock != p_main_clk[i])
{
return FAIL;
}
chksum += p_main_clk[i];
}
chksum += p_main_clk[5];
if ( (chksum) == 0)
{
return SUCCESS;
}
else
{
return FAIL;
}
}
static s32 gtp_main_clk_proc(struct goodix_ts_data *ts)
{
s32 ret = 0;
s32 i = 0;
s32 clk_chksum = 0;
struct file *clk_filp = NULL;
u8 p_main_clk[6] = {0};
ret = gup_check_fs_mounted("/data");
if (FAIL == ret)
{
ts->clk_chk_fs_times++;
GTP_DEBUG("Clock check /data times/MAX_TIMES: %d / %d", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);
if (ts->clk_chk_fs_times < GTP_CHK_FS_MNT_MAX)
{
msleep(50);
GTP_INFO("/data not mounted.");
return FAIL;
}
GTP_INFO("Check /data mount timeout!");
}
else
{
GTP_INFO("/data mounted!!!(%d/%d)", ts->clk_chk_fs_times, GTP_CHK_FS_MNT_MAX);
}
clk_filp = filp_open(GTP_MAIN_CLK_PATH, O_RDWR | O_CREAT, 0666);
if (IS_ERR(clk_filp))
{
GTP_ERROR("%s is unavailable, calculate main clock", GTP_MAIN_CLK_PATH);
}
else
{
clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);
clk_filp->f_op->read(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);
ret = gtp_verify_main_clk(p_main_clk);
if (FAIL == ret)
{
// recalculate main clock & rewrite main clock data to file
GTP_ERROR("main clock data in %s is wrong, recalculate main clock", GTP_MAIN_CLK_PATH);
}
else
{
GTP_INFO("main clock data in %s used, main clock freq: %d", GTP_MAIN_CLK_PATH, p_main_clk[0]);
filp_close(clk_filp, NULL);
goto update_main_clk;
}
}
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_OFF);
#endif
ret = gup_clk_calibration();
gtp_esd_recovery(ts->client);
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_ON);
#endif
GTP_INFO("calibrate main clock: %d", ret);
if (ret < 50 || ret > 120)
{
GTP_ERROR("wrong main clock: %d", ret);
goto exit_main_clk;
}
// Sum{0x8020~0x8025} = 0
for (i = 0; i < 5; ++i)
{
p_main_clk[i] = ret;
clk_chksum += p_main_clk[i];
}
p_main_clk[5] = 0 - clk_chksum;
if (!IS_ERR(clk_filp))
{
GTP_DEBUG("write main clock data into %s", GTP_MAIN_CLK_PATH);
clk_filp->f_op->llseek(clk_filp, 0, SEEK_SET);
clk_filp->f_op->write(clk_filp, (char *)p_main_clk, 6, &clk_filp->f_pos);
filp_close(clk_filp, NULL);
}
update_main_clk:
GTP_INFO("main clock data %d %d %d %d %d %d", p_main_clk[0], p_main_clk[1], p_main_clk[2]\
, p_main_clk[3], p_main_clk[4], p_main_clk[5]);
ret = i2c_write_bytes(ts->client, GTP_REG_MAIN_CLK, p_main_clk, 6);
if (FAIL == ret)
{
GTP_ERROR("update main clock failed!");
return FAIL;
}
return SUCCESS;
exit_main_clk:
if (!IS_ERR(clk_filp))
{
filp_close(clk_filp, NULL);
}
return FAIL;
}
s32 gtp_gt9xxf_init(struct i2c_client *client)
{
s32 ret = 0;
ret = gup_fw_download_proc(NULL, GTP_FL_FW_BURN);
if (FAIL == ret)
{
return FAIL;
}
ret = gtp_fw_startup(client);
if (FAIL == ret)
{
return FAIL;
}
return SUCCESS;
}
void gtp_get_chip_type(struct goodix_ts_data *ts)
{
u8 opr_buf[10] = {0x00};
s32 ret = 0;
msleep(10);
ret = gtp_i2c_read_dbl_check(ts->client, GTP_REG_CHIP_TYPE, opr_buf, 10);
if (FAIL == ret)
{
GTP_ERROR("Failed to get chip-type, set chip type default: GOODIX_GT9");
ts->chip_type = CHIP_TYPE_GT9;
return;
}
if (!memcmp(opr_buf, "GOODIX_GT9", 10))
{
ts->chip_type = CHIP_TYPE_GT9;
}
else // GT9XXF
{
ts->chip_type = CHIP_TYPE_GT9F;
}
GTP_INFO("Chip Type: %s", (ts->chip_type == CHIP_TYPE_GT9) ? "GOODIX_GT9" : "GOODIX_GT9F");
}
#endif
//************* For GT9XXF End ************//
/*******************************************************
Function:
I2c probe.
Input:
client: i2c device struct.
id: device id.
Output:
Executive outcomes.
0: succeed.
*******************************************************/
static int goodix_ts_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
s32 ret = -1;
struct goodix_ts_data *ts;
u16 version_info;
GTP_DEBUG_FUNC();
//do NOT remove these logs
GTP_INFO("GTP Driver Version: %s", GTP_DRIVER_VERSION);
GTP_INFO("GTP Driver Built@%s, %s", __TIME__, __DATE__);
GTP_INFO("GTP I2C Address: 0x%02x", client->addr);
i2c_connect_client = client;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
{
GTP_ERROR("I2C check functionality failed.");
return -ENODEV;
}
ts = kzalloc(sizeof(*ts), GFP_KERNEL);
if (ts == NULL)
{
GTP_ERROR("Alloc GFP_KERNEL memory failed.");
return -ENOMEM;
}
memset(ts, 0, sizeof(*ts));
INIT_WORK(&ts->work, goodix_ts_work_func);
ts->client = client;
spin_lock_init(&ts->irq_lock); // 2.6.39 later
// ts->irq_lock = SPIN_LOCK_UNLOCKED; // 2.6.39 & before
#if GTP_ESD_PROTECT
ts->clk_tick_cnt = 2 * HZ; // HZ: clock ticks in 1 second generated by system
GTP_DEBUG("Clock ticks for an esd cycle: %d", ts->clk_tick_cnt);
spin_lock_init(&ts->esd_lock);
// ts->esd_lock = SPIN_LOCK_UNLOCKED;
#endif
i2c_set_clientdata(client, ts);
ts->gtp_rawdiff_mode = 0;
ret = gtp_request_io_port(ts);
if (ret < 0)
{
GTP_ERROR("GTP request IO port failed.");
kfree(ts);
return ret;
}
#if GTP_COMPATIBLE_MODE
gtp_get_chip_type(ts);
if (CHIP_TYPE_GT9F == ts->chip_type)
{
ret = gtp_gt9xxf_init(ts->client);
if (FAIL == ret)
{
GTP_INFO("Failed to init GT9XXF.");
}
}
#endif
ret = gtp_i2c_test(client);
if (ret < 0)
{
GTP_ERROR("I2C communication ERROR!");
}
ret = gtp_read_version(client, &version_info);
if (ret < 0)
{
GTP_ERROR("Read version failed.");
}
ret = gtp_init_panel(ts);
if (ret < 0)
{
GTP_ERROR("GTP init panel failed.");
ts->abs_x_max = GTP_MAX_WIDTH;
ts->abs_y_max = GTP_MAX_HEIGHT;
ts->int_trigger_type = GTP_INT_TRIGGER;
}
#if GTP_AUTO_UPDATE
ret = gup_init_update_proc(ts);
if (ret < 0)
{
GTP_ERROR("Create update thread error.");
}
#endif
ret = gtp_request_input_dev(ts);
if (ret < 0)
{
GTP_ERROR("GTP request input dev failed");
}
ret = gtp_request_irq(ts);
if (ret < 0)
{
GTP_INFO("GTP works in polling mode.");
}
else
{
GTP_INFO("GTP works in interrupt mode.");
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
#if GTP_CREATE_WR_NODE
init_wr_node(client);
#endif
#if GTP_ESD_PROTECT
gtp_esd_switch(client, SWITCH_ON);
#endif
return 0;
}
/*******************************************************
Function:
Goodix touchscreen driver release function.
Input:
client: i2c device struct.
Output:
Executive outcomes. 0---succeed.
*******************************************************/
static int goodix_ts_remove(struct i2c_client *client)
{
struct goodix_ts_data *ts = i2c_get_clientdata(client);
GTP_DEBUG_FUNC();
#ifdef CONFIG_HAS_EARLYSUSPEND
unregister_early_suspend(&ts->early_suspend);
#endif
#if GTP_CREATE_WR_NODE
uninit_wr_node();
#endif
#if GTP_ESD_PROTECT
destroy_workqueue(gtp_esd_check_workqueue);
#endif
if (ts)
{
if (ts->use_irq)
{
GTP_GPIO_AS_INPUT(GTP_INT_PORT);
GTP_GPIO_FREE(GTP_INT_PORT);
free_irq(client->irq, ts);
}
else
{
hrtimer_cancel(&ts->timer);
}
}
GTP_INFO("GTP driver removing...");
i2c_set_clientdata(client, NULL);
input_unregister_device(ts->input_dev);
kfree(ts);
return 0;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
/*******************************************************
Function:
Early suspend function.
Input:
h: early_suspend struct.
Output:
None.
*******************************************************/
static void goodix_ts_early_suspend(struct early_suspend *h)
{
struct goodix_ts_data *ts;
s8 ret = -1;
ts = container_of(h, struct goodix_ts_data, early_suspend);
GTP_DEBUG_FUNC();
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_OFF);
#endif
ts->gtp_is_suspend = 1;
#if GTP_SLIDE_WAKEUP
ret = gtp_enter_doze(ts);
#else
if (ts->use_irq)
{
gtp_irq_disable(ts);
}
else
{
hrtimer_cancel(&ts->timer);
}
ret = gtp_enter_sleep(ts);
#endif
if (ret < 0)
{
GTP_ERROR("GTP early suspend failed.");
}
// to avoid waking up while not sleeping
// delay 48 + 10ms to ensure reliability
msleep(58);
}
/*******************************************************
Function:
Late resume function.
Input:
h: early_suspend struct.
Output:
None.
*******************************************************/
static void goodix_ts_late_resume(struct early_suspend *h)
{
struct goodix_ts_data *ts;
s8 ret = -1;
ts = container_of(h, struct goodix_ts_data, early_suspend);
GTP_DEBUG_FUNC();
ret = gtp_wakeup_sleep(ts);
#if GTP_SLIDE_WAKEUP
doze_status = DOZE_DISABLED;
#endif
if (ret < 0)
{
GTP_ERROR("GTP later resume failed.");
}
#if (GTP_COMPATIBLE_MODE)
if (CHIP_TYPE_GT9F == ts->chip_type)
{
// do nothing
}
else
#endif
{GTP_INFO("it is not CHIP_TYPE_GT9F");
gtp_send_cfg(ts->client);
}
if (ts->use_irq)
{
gtp_irq_enable(ts);
}
else
{
hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);
}
ts->gtp_is_suspend = 0;
#if GTP_ESD_PROTECT
gtp_esd_switch(ts->client, SWITCH_ON);
#endif
}
#endif
#if GTP_ESD_PROTECT
s32 gtp_i2c_read_no_rst(struct i2c_client *client, u8 *buf, s32 len)
{
struct i2c_msg msgs[2];
s32 ret=-1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msgs[0].flags = !I2C_M_RD;
msgs[0].addr = client->addr;
msgs[0].len = GTP_ADDR_LENGTH;
msgs[0].buf = &buf[0];
//msgs[0].scl_rate = 300 * 1000; // for Rockchip, etc.
msgs[1].flags = I2C_M_RD;
msgs[1].addr = client->addr;
msgs[1].len = len - GTP_ADDR_LENGTH;
msgs[1].buf = &buf[GTP_ADDR_LENGTH];
//msgs[1].scl_rate = 300 * 1000;
while(retries < 5)
{
ret = i2c_transfer(client->adapter, msgs, 2);
if(ret == 2)break;
retries++;
}
if ((retries >= 5))
{
GTP_ERROR("I2C Read: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
}
return ret;
}
s32 gtp_i2c_write_no_rst(struct i2c_client *client,u8 *buf,s32 len)
{
struct i2c_msg msg;
s32 ret = -1;
s32 retries = 0;
GTP_DEBUG_FUNC();
msg.flags = !I2C_M_RD;
msg.addr = client->addr;
msg.len = len;
msg.buf = buf;
//msg.scl_rate = 300 * 1000; // for Rockchip, etc
while(retries < 5)
{
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret == 1)break;
retries++;
}
if((retries >= 5))
{
GTP_ERROR("I2C Write: 0x%04X, %d bytes failed, errcode: %d!", (((u16)(buf[0] << 8)) | buf[1]), len-2, ret);
}
return ret;
}
/*******************************************************
Function:
switch on & off esd delayed work
Input:
client: i2c device
on: SWITCH_ON / SWITCH_OFF
Output:
void
*********************************************************/
void gtp_esd_switch(struct i2c_client *client, s32 on)
{
struct goodix_ts_data *ts;
ts = i2c_get_clientdata(client);
spin_lock(&ts->esd_lock);
if (SWITCH_ON == on) // switch on esd
{
if (!ts->esd_running)
{
ts->esd_running = 1;
spin_unlock(&ts->esd_lock);
GTP_INFO("Esd started");
queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt);
}
else
{
spin_unlock(&ts->esd_lock);
}
}
else // switch off esd
{
if (ts->esd_running)
{
ts->esd_running = 0;
spin_unlock(&ts->esd_lock);
GTP_INFO("Esd cancelled");
cancel_delayed_work_sync(>p_esd_check_work);
}
else
{
spin_unlock(&ts->esd_lock);
}
}
}
/*******************************************************
Function:
Initialize external watchdog for esd protect
Input:
client: i2c device.
Output:
result of i2c write operation.
1: succeed, otherwise: failed
*********************************************************/
static s32 gtp_init_ext_watchdog(struct i2c_client *client)
{
u8 opr_buffer[3] = {0x80, 0x41, 0xAA};
GTP_DEBUG("[Esd]Init external watchdog");
return gtp_i2c_write_no_rst(client, opr_buffer, 3);
}
/*******************************************************
Function:
Esd protect function.
External watchdog added by meta, 2013/03/07
Input:
work: delayed work
Output:
None.
*******************************************************/
static void gtp_esd_check_func(struct work_struct *work)
{
s32 i;
s32 ret = -1;
struct goodix_ts_data *ts = NULL;
u8 esd_buf[4] = {0x80, 0x40};
GTP_DEBUG_FUNC();
ts = i2c_get_clientdata(i2c_connect_client);
if (ts->gtp_is_suspend)
{
GTP_INFO("Esd suspended!");
return;
}
for (i = 0; i < 3; i++)
{
ret = gtp_i2c_read_no_rst(ts->client, esd_buf, 4);
GTP_DEBUG("[Esd]0x8040 = 0x%02X, 0x8041 = 0x%02X", esd_buf[2], esd_buf[3]);
if ((ret < 0))
{
// IIC communication problem
continue;
}
else
{
if ((esd_buf[2] == 0xAA) || (esd_buf[3] != 0xAA))
{
// IC works abnormally..
u8 chk_buf[4] = {0x80, 0x40};
gtp_i2c_read_no_rst(ts->client, chk_buf, 4);
GTP_DEBUG("[Check]0x8040 = 0x%02X, 0x8041 = 0x%02X", chk_buf[2], chk_buf[3]);
if ((chk_buf[2] == 0xAA) || (chk_buf[3] != 0xAA))
{
i = 3;
break;
}
else
{
continue;
}
}
else
{
// IC works normally, Write 0x8040 0xAA, feed the dog
esd_buf[2] = 0xAA;
gtp_i2c_write_no_rst(ts->client, esd_buf, 3);
break;
}
}
}
if (i >= 3)
{
#if GTP_COMPATIBLE_MODE
if (CHIP_TYPE_GT9F == ts->chip_type)
{
if (ts->rqst_processing)
{
GTP_INFO("Request processing, no esd recovery");
}
else
{
GTP_ERROR("IC working abnormally! Process esd recovery.");
gtp_esd_recovery(ts->client);
}
}
else
#endif
{
GTP_ERROR("IC working abnormally! Process reset guitar.");
gtp_reset_guitar(ts->client, 50);
}
}
if(!ts->gtp_is_suspend)
{
queue_delayed_work(gtp_esd_check_workqueue, >p_esd_check_work, ts->clk_tick_cnt);
}
else
{
GTP_INFO("Esd suspended!");
}
return;
}
#endif
static const struct i2c_device_id goodix_ts_id[] = {
{ GTP_I2C_NAME, 0 },
{ }
};
static struct i2c_driver goodix_ts_driver = {
.probe = goodix_ts_probe,
.remove = goodix_ts_remove,
//#ifndef CONFIG_HAS_EARLYSUSPEND
#ifdef CONFIG_HAS_EARLYSUSPEND
.suspend = goodix_ts_early_suspend,
.resume = goodix_ts_late_resume,
#endif
.id_table = goodix_ts_id,
.driver = {
.name = GTP_I2C_NAME,
.owner = THIS_MODULE,
},
};
/*******************************************************
Function:
Driver Install function.
Input:
None.
Output:
Executive Outcomes. 0---succeed.
********************************************************/
static int __devinit goodix_ts_init(void)
{
s32 ret;
GTP_DEBUG_FUNC();
GTP_INFO("GTP driver installing...");
goodix_wq = create_singlethread_workqueue("goodix_wq");
if (!goodix_wq)
{
GTP_ERROR("Creat workqueue failed.");
return -ENOMEM;
}
#if GTP_ESD_PROTECT
INIT_DELAYED_WORK(>p_esd_check_work, gtp_esd_check_func);
gtp_esd_check_workqueue = create_workqueue("gtp_esd_check");
#endif
ret = i2c_add_driver(&goodix_ts_driver);
misc_register(&misc);
return ret;
}
/*******************************************************
Function:
Driver uninstall function.
Input:
None.
Output:
Executive Outcomes. 0---succeed.
********************************************************/
static void __exit goodix_ts_exit(void)
{
GTP_DEBUG_FUNC();
GTP_INFO("GTP driver exited.");
i2c_del_driver(&goodix_ts_driver);
if (goodix_wq)
{
destroy_workqueue(goodix_wq);
}
}
late_initcall(goodix_ts_init);
module_exit(goodix_ts_exit);
MODULE_DESCRIPTION("GTP Series Driver");
MODULE_LICENSE("GPL");