- 大数据集群架构hadoop集群、Hbase集群、zookeeper、kafka、spark、flink、doris、dataeas(二)
争取不加班!
hadoophbasezookeeper大数据运维
zookeeper单节点部署wget-chttps://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz下载地址tarxfapache-zookeeper-3.8.4-bin.tar.gz-C/data/&&mv/data/apache-zookeeper-3.8.4-bin//data/zoo
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 数据同步工具对比:Canal、DataX与Flink CDC
智慧源点
大数据flink大数据
在现代数据架构中,数据同步是构建数据仓库、实现实时分析、支持业务决策的关键环节。Canal、DataX和FlinkCDC作为三种主流的数据同步工具,各自有着不同的设计理念和适用场景。本文将深入探讨这三者的技术特点、使用场景以及实践中的差异,帮助开发者根据实际需求选择合适的工具。1.工具概述1.1CanalCanal是阿里巴巴开源的一款基于MySQL数据库增量日志(binlog)解析的组件,主要用于
- 4_Flink CEP
frimiku
flink大数据云计算
FlinkCEP1、何为CEP?CEP,全称为复杂事件处理(ComplexEventProcessing),是一种用于实时监测和分析数据流的技术。CEP详细讲解:CEP是基于动态环境的事件流的分析技术,事件是状态变化(持续生成数据)的。通过分析事件间的关系,利用过滤、关联、聚合等技术,根据事件间的【时序关系和聚合关系】制定检测规则,持续地从事件流中查询出【符合规则要求】的事件序列,最终分析得到更复
- Flink项目基础配置指南
Edingbrugh.南空
flink大数据flink大数据
在大数据处理领域,ApacheFlink凭借强大的实时流处理和批处理能力,成为众多开发者的首选工具。在日常工作中,开发FlinkJar任务是常见需求,但每次都需重复配置日志、梳理pom依赖、设置打包插件等,流程繁琐且易出错。为提升开发效率,减少重复劳动,将这些基础配置进行整理归纳十分必要。本文将围绕Flink项目的本地日志配置、pom依赖及插件配置展开详细介绍,为开发者提供一套可直接复用的基础配置
- Apache SeaTunnel Flink引擎执行流程源码分析
Code Monkey’s Lab
源码分析Flinkflink大数据架构seatunnel
目录1.任务启动入口2.任务执行命令类:FlinkTaskExecuteCommand3.FlinkExecution的创建与初始化3.1核心组件初始化3.2关键对象说明4.任务执行:FlinkExecution.execute()5.Source处理流程5.1插件初始化5.2数据流生成6.Transform处理流程6.1插件初始化6.2转换执行7.Sink处理流程7.1插件初始化7.2数据输出执
- Beam2.61.0版本消费kafka重复问题排查
隔壁寝室老吴
kafkalinq分布式
1.问题出现过程在测试环境测试flink的job的任务消费kafka的情况,通过往job任务发送一条消息,然后flinkwebui上消费出现了两条。然后通过重启JobManager和TaskManager后,任务从checkpoint恢复后就会出现重复消费。当任务不从checkpoint恢复的时候,任务不会出现重复消费的情况。由此可见是beam从checkpoint恢复的时候出现了重复消费的问题。
- Flink CDC同步Oracle无主键表
Zzz...209
javaflinkoracle
FlinkCDC同步Oracle无主键表问题背景问题解决问题背景FlinkCDC是一种很强大且实用的实时数据同步工具,官网如下。链接:link但是在实际使用过程中还是会有些不足之处,比如说同步Oracle数据库中无主键以及唯一键的表时,关于目标端的幂等性时无法保证的。问题解决在Oracle数据库中,表中有一个伪列ROWID,而在CDC同步过来的数据中是不包含此列的。修改源码如下,使之携带ROWID
- Flink Oracle CDC Connector详解
24k小善
flinkjava大数据
1.FlinkOracleCDCConnector核心功能功能模块描述实时数据捕获实时捕捉Oracle数据库中的DML操作(INSERT,UPDATE,DELETE)。Schema变更支持支持部分DDL操作的检测(如表结构变更)。端到端一致性确保数据从Oracle到Flink的传输过程中的完整性和一致性。可扩展性支持高吞吐量和大规模数据处理需求。容错机制具备断点续传能力,确保在中断后能够从上次的位
- Apache Flink深度解析:现代流处理引擎
暴躁哥
大数据技术apacheflink大数据
好的,我来帮您写一篇关于Flink技术的详细介绍博客:ApacheFlink深度解析:现代流处理引擎一、Flink简介ApacheFlink是一个开源的分布式流处理和批处理统一计算引擎。它提供了数据流上的状态计算、精确一次性语义保证、高吞吐、低延迟等特性,能够运行在所有常见的集群环境中。1.1核心特性统一的流批处理精确一次性语义事件时间处理有状态计算高吞吐和低延迟高可用性配置内存管理二、Flink
- Flink SQL Connector Kafka 核心参数全解析与实战指南
Edingbrugh.南空
kafkaflink大数据flinksqlkafka
FlinkSQLConnectorKafka是连接FlinkSQL与Kafka的核心组件,通过将Kafka主题抽象为表结构,允许用户使用标准SQL语句完成数据读写操作。本文基于ApacheFlink官方文档(2.0版本),系统梳理从表定义、参数配置到实战调优的全流程指南,帮助开发者高效构建实时数据管道。一、依赖配置与环境准备1.1Maven依赖引入在FlinkSQL项目中使用Kafka连接器需添加
- Flink部署与应用——Flink集群模式
黄雪超
从0开始学Flinkflink大数据
Flink集群模式在大数据处理领域,ApacheFlink凭借其卓越的流批一体化处理能力,成为众多企业的首选框架。而Flink集群模式的选择与运用,对于充分发挥Flink的性能优势、满足不同业务场景的需求至关重要。接下来,我们将深入探讨Flink的多种集群模式,剖析其特点、适用场景及相互间的差异。集群部署模式对比Flink的集群部署模式可依据两个关键维度进行分类:一是集群的生命周期和资源隔离方式;
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 69、Flink 的 DataStream Connector 之 Kafka 连接器详解
猫猫爱吃小鱼粮
Flink-1.19从0到精通flinkkafka大数据
1.概述Flink提供了Kafka连接器使用精确一次(Exactly-once)的语义在Kafkatopic中读取和写入数据。目前还没有Flink1.19可用的连接器。2.KafkaSourcea)使用方法KafkaSource提供了构建类来创建KafkaSource的实例。以下代码片段展示了如何构建KafkaSource来消费“input-topic”最早位点的数据,使用消费组“my-group
- Flink SourceFunction深度解析:数据输入的起点与奥秘
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理流程中,StreamGraph构建起了作业执行的逻辑框架,而数据的源头则始于SourceFunction。作为Flink数据输入的关键组件,SourceFunction负责从外部数据源读取数据,并将其转换为Flink作业能够处理的格式。深入理解SourceFunction的原理与实现,对于构建高效、稳定的数据处理链路至关重要。接下来,我们将结合有道云笔记内容,对FlinkSo
- 【Flink实战】 Flink SQL 中处理字符串 `‘NULL‘` 并转换为 `BIGINT`
roman_日积跬步-终至千里
#flink实战sqlflink数据库
文章目录一、问题描述解决方案解释一、问题描述当我们尝试将字符串'NULL'直接转换为BIGINT时,会遇到NumberFormatException,因为'NULL'不是一个有效的数字字符串。为了避免这种错误,我们需要在转换之前进行检查。解决方案我们可以使用CASE语句来实现条件转换。具体步骤如下:使用CASE语句进行条件判断:检查字符串是否为'NULL',如果是'NULL',则返回0;否则,将字
- Flink状态和容错-基础篇
有数的编程笔记
Flinkflink大数据
1.概念flink的状态和容错绕不开3个概念,statebackends和checkpoint、savepoint。本文重心即搞清楚这3部分内容。容错机制是基于在状态快照的一种恢复方式。但是状态和容错要分开来看。什么是状态,为什么需要状态?流计算和批计算在数据源上最大的区别是,流计算中的数据是无边界的,数据持续不断,而批计算中数据是有边界的,在计算时可以一次性将数据全部拿到。在流计算中无法拿到全部
- flink:风控/反欺诈检测系统案例研究1,2,3
菠萝科技
java·未分类flinkflink风控欺诈
https://flink.apache.org/news/2020/01/15/demo-fraud-detection.htmlhttps://flink.apache.org/news/2020/03/24/demo-fraud-detection-2.htmlhttps://flink.apache.org/news/2020/07/30/demo-fraud-detection-3.ht
- 实时反欺诈:基于 Spring Boot 与 Flink 构建信用卡风控系统
程序员leon
风控大数据系列springbootflink后端风控
在金融科技飞速发展的今天,信用卡欺诈手段日益高明和快速。传统的基于批处理的事后分析模式已难以应对实时性要求极高的欺诈场景。本文将详细介绍如何利用SpringBoot和ApacheFlink这对强大的组合,构建一个高性能、可扩展的实时信用卡反欺诈系统。一、核心思想:从“单点”到“模式”传统的反欺诈规则可能只关注单笔交易的某个特征,比如“金额是否过大”。而现代的欺诈行为往往是一种模式(Pattern)
- Flink SQL解析工具类实现:从SQL到数据血缘的完整解析
Edingbrugh.南空
flink大数据flinksql大数据
在大数据处理领域,FlinkSQL作为流批统一的声明式编程接口,已成为数据处理的核心组件。本文将深入解析一个FlinkSQL解析工具类的实现,该工具能够解析FlinkSQL语句,提取表定义、操作关系及数据血缘信息,为数据治理、血缘分析和SQL验证提供基础能力。工具类核心功能概述FlinkParserUtil类实现了FlinkSQL的解析功能,主要包含以下核心能力:SQL过滤与解析:过滤自定义函数声
- 探秘Flink Connector加载机制:连接外部世界的幕后引擎
Edingbrugh.南空
flink大数据flink大数据
在Flink的数据处理生态中,SourceFunction负责数据的输入源头,而真正架起Flink与各类外部存储、消息系统桥梁的,则是Connector。从Kafka消息队列到HDFS文件系统,从MySQL数据库到Elasticsearch搜索引擎,Flink通过Connector实现了与多样化外部系统的交互。而这一切交互的基础,都离不开背后强大且精巧的Connector加载机制。接下来,我们将深
- 探秘Flink Streaming Source Analysis:一个强大的流处理源码解析工具
强妲佳Darlene
探秘FlinkStreamingSourceAnalysis:一个强大的流处理源码解析工具去发现同类优质开源项目:https://gitcode.com/项目简介在大数据实时处理领域,ApacheFlink是一个不可或缺的名字。而flink-streaming-source-analysis项目是由开发者mickey0524创建的一个开源工具,旨在帮助我们更深入地理解和分析Flink流处理的源代码
- Flink SQL 解析器与 Calcite 在大数据处理中的应用
JieLun_C
flinksql大数据
FlinkSQL解析器与Calcite在大数据处理中的应用在大数据处理领域中,FlinkSQL解析器与Calcite是两个重要的组件,它们在解析和优化FlinkSQL查询方面发挥着关键作用。本文将介绍FlinkSQL解析器和Calcite的基本概念,并给出一些示例代码,以帮助读者更好地理解它们的用途和工作原理。FlinkSQL解析器FlinkSQL解析器是Flink提供的一个模块,用于将SQL查询
- Flink系列-背压(反压)
Empty-cup
Flinkflink大数据
目录了解背压什么是背压背压产生的原因背压导致的影响定位背压解决背压了解背压什么是背压在流式处理系统中,如果出现下游消费的速度跟不上上游生产数据的速度,就种现象就叫做背压(backpressure,也叫反压)背压产生的原因下游消费的速度跟不上上游生产数据的速度,可能出现的原因如下:节点有性能瓶颈,可能是该节点所在的机器有网络、磁盘等等故障,机器的网络延迟和磁盘不足、频繁GC、数据热点等原因。数据源生
- Flink中的反压与背压:原理、检测与应对
Edingbrugh.南空
大数据flinkflink大数据
在大数据流处理领域,Flink以其高效、灵活的特性被广泛应用。然而,在数据的高速流动与处理过程中,数据生产速度和消费速度的不匹配问题时常出现,这就引出了流处理系统中的重要概念——反压(Backpressure)和背压(Backpressure)。尽管名称表述略有差异,但二者本质上描述的是同一类情况,它们的有效处理对保障Flink系统的稳定性和性能起着关键作用。一、反压与背压:概念解析反压(Back
- Flink SQL执行流程深度剖析:从SQL语句到分布式执行
Edingbrugh.南空
大数据flinkflinksql分布式
在大数据处理领域,FlinkSQL凭借其强大的处理能力和易用性,成为众多开发者的选择。与其他OLAP引擎类似,FlinkSQL的SQL执行流程大致都需要经过词法解析、语法解析、生成抽象语法树(AST)、校验以及生成逻辑执行计划等步骤。整体流程可笼统地概括为两大阶段:从SQL到Operation的转换,再从Operation到Transformation的转换,最终进入分布式执行阶段。接下来,我们将
- 互联网大数据求职面试:从Zookeeper到Flink的技术探讨
场景:互联网大数据求职面试在一个阳光明媚的下午,小白来到了知名互联网公司,准备接受他人生中最重要的一次面试。他的面试官是以严肃和专业著称的老黑。第一轮提问:分布式系统与协调老黑:小白,你能解释一下Zookeeper在分布式系统中的作用吗?小白:哦,这个简单,Zookeeper是一个分布式协调服务,主要用来解决分布式系统中数据一致性问题,比如选主、配置管理和命名服务。老黑:不错,那你知道Yarn是如
- 数据仓库面试题合集⑥
晴天彩虹雨
数据仓库面试解析集锦数据仓库大数据clickhousekafka
实时指标体系设计+Flink优化实战:面试高频问题+项目答题模板面试中不仅会问“你做过实时处理吗?”,更会追问:“实时指标体系是怎么搭建的?”、“你们的Flink稳定性怎么保证?”本篇聚焦实时指标体系设计与Flink优化场景,帮你答出架构设计力,也答出调优实战感。①面试核心问题导读“你们实时指标是怎么设计的?”“怎么处理指标的去重、延迟和聚合问题?”“你们的Flink作业怎么做资源优化?”“有没有
- flink的多种部署模式
Azoner
flink
##部署模式和运行模式###部署模式-本地local-单机无需分布式资源管理-集群-独立集群standalone-需要flink自身的任务管理工具-jobmanager接收和调度任务-taskmanager执行-on其他资源管理工具yarn/k8s-yarn-注意区分flink的和yarn的taskmanager###运行模式-session-先启动一个集群,保持一个会话,在这个会话中通过客户端提
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比