一道简单的无穷级数题目

  1. 求级数 ∑ n = 1 + ∞ n x n \sum _{n=1} ^ {+\infty} n x^n n=1+nxn

解析:


s = ∑ n = 1 + ∞ n x n s = \sum _{n=1} ^ {+\infty} n x^n s=n=1+nxn

s 1 = ∑ n = 1 + ∞ n x n − 1 s_1 = \sum _{n=1} ^ {+\infty} n x^{n-1} s1=n=1+nxn1

s = s 1 x s = s_1 x s=s1x

∫ s 1 d x = ∑ n = 1 n = ∞ x n = 1 1 − x − 1 = x 1 − x \int s_1 dx = \sum_{n=1}^{n = \infty}x^n = \frac{1}{1-x} - 1 = \frac{x}{1-x} s1dx=n=1n=xn=1x11=1xx

且x的收敛域为(0,1)

s 1 = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 s_1 = (\frac{x}{1-x})' = \frac{1}{(1-x)^2} s1=(1xx)=(1x)21

s = s 1 x = x ( 1 − x ) 2 x ∈ ( 0 , 1 ) s = s_1 x =\frac{x}{(1-x)^2} \quad x \in (0,1) s=s1x=(1x)2xx(0,1)

解出上题中需要知道的一个重要的知识点是 1 1 − x \frac{1}{1-x} 1x1的泰勒展开式:

1 1 − x = 1 + 1 1 ! ( 1 ( 1 − x ) 2 ∣ x = 0 ) x + 1 2 ! ( 2 ( 1 − x ) 3 ∣ x = 0 ) x 2 + + 1 3 ! ( 3 ! ( 1 − x ) 4 ∣ x = 0 ) x 3 + 1 4 ! ( 4 ! ( 1 − x ) 5 ∣ x = 0 ) x 4 + 1 5 ! ( 5 ! ( 1 − x ) 6 ∣ x = 0 ) x 5 + . . . + 1 ( n − 1 ) ! ( ( n − 1 ) ! ( 1 − x ) n ∣ x = 0 ) x n − 1 + 1 n ! ( n ! ( 1 − x ) n + 1 ∣ x = 0 ) x n = 1 + x + x 2 + x 3 + x 4 + x 5 + . . . + x n − 1 + x n = ∑ n = 0 + ∞ x n \frac{1}{1-x} = 1 + \frac{1}{1!} (\frac{1}{(1-x)^2}| _{x = 0}) x+\frac{1}{2!} (\frac{2}{(1-x)^3}| _{x = 0})x^2 + \\ +\frac{1}{3!}(\frac{3!}{(1-x)^4}| _{x = 0})x^3+\frac{1}{4!}(\frac{4!}{(1-x)^5}| _{x = 0})x^4+\frac{1}{5!}(\frac{5!}{(1-x)^6}| _{x = 0})x^5+...\\ +\frac{1}{(n-1)!}(\frac{(n-1)!}{(1-x)^n}| _{x = 0})x^{n-1}+\frac{1}{n!}(\frac{n!}{(1-x)^{n+1}}| _{x = 0})x^{n} = \\ 1 + x + x^2 + x^3 + x^4 + x^5 + ... + x^{n-1} + x^n = \sum_{n=0}^{+\infty} x^n 1x1=1+1!1((1x)21x=0)x+2!1((1x)32x=0)x2++3!1((1x)43!x=0)x3+4!1((1x)54!x=0)x4+5!1((1x)65!x=0)x5+...+(n1)!1((1x)n(n1)!x=0)xn1+n!1((1x)n+1n!x=0)xn=1+x+x2+x3+x4+x5+...+xn1+xn=n=0+xn

上述式子是等比数列,根据等比数列的性质,公比x要小于1才收敛。当然根绝达朗贝尔判别法,也可以得出收敛半径是(0,1)

  1. 求极限 lim ⁡ x → 0 sin ⁡ ( sin ⁡ x ) − x x 3 \lim_{x \to 0} \frac{\sin(\sin x) - x}{x^3} x0limx3sin(sinx)x

解:

lim ⁡ x → 0 sin ⁡ ( sin ⁡ x ) − x x 3 = lim ⁡ x → 0 sin ⁡ x − sin ⁡ 3 x 6 − x x 3 = lim ⁡ x → 0 x − x 3 6 − x 3 6 − x x 3 = − 1 / 3 \lim_{x \to 0} \frac{\sin(\sin x) - x}{x^3} =\lim_{x \to 0} \frac{\sin x - \frac{\sin ^ 3x}{6}- x}{x^3} = \\ \lim_{x \to 0} \frac{x - \frac{x^3}{6} - \frac{x^3 }{6}- x}{x^3} = -1/3 x0limx3sin(sinx)x=x0limx3sinx6sin3xx=x0limx3x6x36x3x=1/3

注意:在计算 sin ⁡ 3 x 6 \frac{\sin ^ 3x}{6} 6sin3x的泰勒展开时要小心,不要丢项。

你可能感兴趣的:(高等数学,学习)