数据结构:图的深度优先遍历和广度优先遍历

深度优先
深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。

我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。

具体算法表述如下:

访问初始结点v,并标记结点v为已访问。
查找结点v的第一个邻接结点w。
若w存在,则继续执行4,否则算法结束。
若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

例如下图,其深度优先遍历顺序为 1->2->4->8->5->3->6->7
数据结构:图的深度优先遍历和广度优先遍历_第1张图片

广度优先
类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。

具体算法表述如下:

访问初始结点v并标记结点v为已访问。
结点v入队列
当队列非空时,继续执行,否则算法结束。
出队列,取得队头结点u。
查找结点u的第一个邻接结点w。
若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
1). 若结点w尚未被访问,则访问结点w并标记为已访问。
2). 结点w入队列
3). 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
如下图,其广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8

数据结构:图的深度优先遍历和广度优先遍历_第2张图片

你可能感兴趣的:(数据结构,深度优先,数据结构,宽度优先)