Leetcode--LCR 023. 相交链表题解(求公共结点位置)

Problem: LCR 023. 相交链表

文章目录

  • 题目
  • 思路
  • 解题方法
  • 复杂度
  • Code

题目

(与2012年408数据结构大题类似)

给定两个单链表的头节点 headA 和 headB ,请找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。

图示两个链表在节点 c1 开始相交:

Leetcode--LCR 023. 相交链表题解(求公共结点位置)_第1张图片
题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须保持其原始结构

示例 1:

Leetcode--LCR 023. 相交链表题解(求公共结点位置)_第2张图片

输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at ‘8’
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。

示例 2:

Leetcode--LCR 023. 相交链表题解(求公共结点位置)_第3张图片

输入:intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Intersected at ‘2’
解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [0,9,1,2,4],链表 B 为 [3,2,4]。
在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

示例 3:

Leetcode--LCR 023. 相交链表题解(求公共结点位置)_第4张图片

输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
输出:null
解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。
由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。
这两个链表不相交,因此返回 null 。

提示:
1、listA 中节点数目为 m
2、listB 中节点数目为 n
3、0 <= m, n <= 3 * 104
4、1 <= Node.val <= 105
5、0 <= skipA <= m
6、0 <= skipB <= n
7、如果 listA 和 listB 没有交点,intersectVal 为 0
8、如果 listA 和 listB 有交点,intersectVal == listA[skipA + 1] == listB[skipB + 1]

思路

顺序遍历两个链表到尾结点时,并不能保证两个链表同时到达尾结点。这是因为两个链表的长度不同。假设一个链表比另一个链表长k个结点,我们先在长链表上遍历k个结点,之后同步遍历两个链表。这样我们就能够保证它们同时到达最后一个结点了。由于两个链表从第一个公共结点到链表的尾结点都是重合的。所以它们肯定同时到达第一个公共结点。

解题方法

1、遍历两个链表求得它们的长度len1,len2;
2、比较len1、len2,找出较长的链表,并求L=|len1-len2|;
3、先遍历长链表的L个结点;
4、同步遍历两个链表,直至找到相同结点或链表结束。

复杂度

  • 时间复杂度:

O ( l e n 1 + l e n 2 ) O(len1+len2) O(len1+len2)

  • 空间复杂度:

O ( 1 ) O(1) O(1)

Code

  /**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */

class Solution {
public:
    int Length(ListNode *L) { //求链表长度
        int count = 0;
        if(L==NULL) return 0;
        ListNode *p = L;
        while(p) {
            count++;
            p=p->next;
        }
        return count;
    }

    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
        int len1, len2, L;
        ListNode *longList, *shortList;
        //步骤1
        len1 = Length(headA);
        len2 = Length(headB);
        //步骤2
        if(len1>len2) {
            longList = headA;
            shortList = headB;
            L = len1 - len2;
        }else{
            longList = headB;
            shortList = headA;
            L = len2 - len1;
        }
        //步骤3
        while(L--) {
            longList = longList->next;
        }
        //步骤4
        while(longList) {
            if(longList==shortList) return longList;
            longList = longList->next;
            shortList = shortList->next;
        }
        return NULL;
    }
};

你可能感兴趣的:(刷题,leetcode,链表,算法)