OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理

文章目录

    • 七层网络模型
    • TCP/IP 协议基本概念
    • TCP三次握手
    • 四次挥手
    • Socket原理
    • 常见面试题

七层网络模型

(简称OSI模型):
OSI 模型(Open System Interconnection model)是一个由国际标准化组织提出的概念模型,试图供一个使各种不同的计算机和网络在世界范围内实现互联的标准框架。它将计算机网络体系结构划分为七层,每层都可以提供抽象良好的接口。了解 OSI 模型有助于理解实际上互联网络的工业标准——TCP/IP 协议。OSI 模型各层间关系和通讯时的数据流向如图所示:
OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第1张图片

  • 下面的图表试图显示不同的TCP/IP和其他的协议在最初OSI模型中的位置:
7 应用层 例如 HTTP、SMTP、SNMP、FTP、Telnet、SIP、SSH、NFS、RTSP、XMPP、Whois、ENRP
6 表示层 例如XDR、ASN.1、SMB、AFP、NCP
5 会话层 例如ASAP、TLS、SSH、ISO 8327 / CCITT X.225、RPC、NetBIOS、ASP、Winsock、BSD sockets
4 传输层 例如 TCPUDP、RTP、SCTP、SPX、ATP、IL
3 网络层 例如IP、ICMP、IGMP、IPX、BGP、OSPF、RIP、IGRP、EIGRP、ARP、RARP、 X.25
2 数据链路层 例如以太网、令牌环、HDLC、帧中继、ISDN、ATM、IEEE 802.11、FDDI、PPP
1 物理层 例如线路、无线电、光纤、信鸽
  • 常见的 应用层协议以下协议的端口号都是固定死的
  • 记住http 和 https 的区别:https是http安全版 ,端口号443。http端口号80。
    OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第2张图片
  • 常见的应用层协议
    OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第3张图片
  • OSI 七层模型通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯,因此其最主要的功能就是帮助不同类型的主机实现数据传输
    。完成中继功能的节点通常称为中继系统。在OSI七层模型中,处于不同层的中继系统具有不同的名称。一个设备工作在哪一层,关键看它工作时利用哪一层的数据头部信息。网桥工作时,是以MAC头部来决定转发端口的,因此显然它是数据链路层的设备。
  • 具体说: 物理层:网卡,网线,集线器,中继器,调制解调器;数据链路层: 网桥,交换机;网络层:
    路由器;网关工作在第四层传输层及其以上;集线器是物理层设备,采用广播的形式来传输信息。交换机就是用来进行报文交换的机器。多为链路层设备(二层交换机),能够进行地址学习,采用存储转发的形式来交换报文.。路由器的一个作用是连通不同的网络,另一个作用是选择信息传送的线路。选择通畅快捷的近路,能大大提高通信速度,减轻网络系统通信负荷,节约网络系统资源,提高网络系统畅通率。

OSI7层模型的小结:

由于OSI是一个理想的模型,因此一般网络系统只涉及其中的几层,很少有系统能够具有所有的7层,并完全遵循它的规定。
在7层模型中,每一层都提供一个特殊的网络功能。从网络功能的角度观察:下面4层(物理层、数据链路层、网络层和传输层)主要提供数据传输和交换功能,即以节点到节点之间的通信为主;第4层作为上下两部分的桥梁,是整个网络体系结构中最关键的部分;而上3层(会话层、表示层和应用层)则以提供用户与应用程序之间的信息和数据处理功能为主。简言之,下4层主要完成通信子网的功能,上3层主要完成资源子网的功能。

参考博文:深入浅出-网络七层模型

TCP/IP 协议基本概念

TCP/IP 协议基本概念:

OSI 模型所分的七层,在实际应用中,往往有一些层被整合,或者功能分散到其他层去。TCP/IP 没有照搬 OSI 模型,也没有 一个公认的 TCP/IP 层级模型,一般划分为三层到五层模型来描述 TCP/IP 协议。

  • 在此描述用一个通用的四层模型来描述,每一层都和 OSI 模型有较强的相关性但是又可能会有交叉。

  • TCP/IP
    的设计,是吸取了分层模型的精华思想——封装。每层对上一层提供服务的时候,上一层的数据结构是黑盒,直接作为本层的数据,而不需要关心上一层协议的任何细节。

  • TCP/IP 分层模型的分层以以太网上传输 UDP 数据包如图所示:
    OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第4张图片

  • 数据包:
    宽泛意义的数据包:每一个数据包都包含"标头"和"数据"两个部分."标头"包含本数据包的一些说明."数据"则是本数据包的内容。

  • 细分数据包:
    应用程序数据包: 标头部分规定应用程序的数据格式.数据部分传输具体的数据内容.——对应上图中的数据!

  • TCP/UDP数据包:
    标头部分包含双方的发出端口和接收端口. UDP数据包: '标头’长度:8个字节,"数据包"总长度最大为65535字节,正好放进一个IP数据包. TCP数据包:
    理论上没有长度限制,但是,为了保证网络传输效率,通常不会超过IP数据长度,确保单个包不会被分割. ——对应上图中的UDP数据!

  • IP数据包:
    标头部分包含通信双方的IP地址,协议版本,长度等信息. '标头’长度:20~60字节,"数据包"总长度最大为65535字节. ——对应上图中的IP数据

  • 以太网数据包:
    最基础的数据包.标头部分包含了通信双方的MAC地址,数据类型等.
    '标头’长度:18字节,'数据’部分长度:46~1500字节. ——对应上图中的以太网数据

TCP/IP 协议族常用协议:

应用层: TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 等等
传输层: TCP,UDP
网络层: IP,ICMP,OSPF,EIGRP,IGMP
数据链路层: SLIP,CSLIP,PPP,MTU

TCP/IP四层模型:
OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第5张图片
TCP/IP协议被组织成四个概念层,其中有三层对应于ISO参考模型中的相应层。TCP/IP协议族并不包含物理层和数据链路层,因此它不能独立完成整个计算机网络系统的功能,必须与许多其他的协议协同工作。TCP/IP分层模型的四个协议层分别完成以下的功能:

  • 第一层:网络接口层
    包括用于协作IP数据在已有网络介质上传输的协议。实际上TCP/IP标准并不定义与ISO数据链路层和物理层相对应的功能。相反,它定义像地址解析协议(Address
    Resolution Protocol,ARP)这样的协议,提供TCP/IP协议的数据结构和实际物理硬件之间的接口。
  • 第二层:网间层
    对应于OSI七层参考模型的网络层。本层包含IP协议、RIP协议(Routing Information
    Protocol,路由信息协议),负责数据的包装、寻址和路由。同时还包含网间控制报文协议(Internet Control MessageProtocol,ICMP)用来提供网络诊断信息。
  • 第三层:传输层
    对应于OSI七层参考模型的传输层,它提供两种端到端的通信服务。其中TCP协议(Transmission Control Protocol)提供可靠的数据流运输服务,UDP协议(Use Datagram Protocol)提供不可靠的用户数据报服务。
  • 第四层:应用层
    对应于OSI七层参考模型的应用层和表达层。因特网的应用层协议包括Finger、Whois、FTP(文件传输协议)、Gopher、HTTP(超文本传输协议)、Telent(远程终端协议)、SMTP(简单邮件传送协议)、IRC(因特网中继会话)、NNTP(网络新闻传输协议)等,这也是本书将要讨论的重点。

TCP三次握手

TCP/IP连接(在互联网的通信中,永远是客户端主动连接到服务端):
手机能够使用联网功能是因为手机底层实现了TCP/IP协议,可以使手机终端通过无线网络建立TCP连接。TCP协议可以对上层网络提供接口,使上层网络数据的传输建立在“无差别”的网络之上。

  • 建立起一个TCP连接需要经过“三次握手”
  • 第一次握手: 客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)
  • 第二次握手: 服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;
  • 第三次握手: 客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。
  • 握手过程中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据。理想状态下,TCP连接一旦建立,在通信双方中的任何一方主动关闭连接之前,TCP连接都将被一直保持下去。

1、握手过程:
OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第6张图片OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第7张图片

  • 序列号seq: 占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。
  • 确认号ack: 占4个字节,期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。
  • 确认ACK: 占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效。
    同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。
  • 终止FIN: 用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接。注意: ACK、SYN和FIN这些大写的单词表示标志位,其值要么是1,要么是0;ack、seq小写的单词表示序号。

2. 字段含义:
OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第8张图片

3. 为何需要三次握手:
OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第9张图片
4. 英文术语:
OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第10张图片

四次挥手

  • 断开过程:
    断开连接时服务器和客户端均可以主动发起断开TCP连接的请求,断开过程需要经过“四次挥手”

OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第11张图片
OSI网络模型 + TCP三次握手、四次挥手 + Socket、TCP、HTTP三者之间的区别和原理_第12张图片

  1. 客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。
  2. 服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。
  3. 客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。
  4. 服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。
  5. 客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。
  6. 服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

Socket原理

  • 套接字(socket)概念:
    套接字(socket)是通信的基石,是支持TCP/IP协议的网络通信的基本操作单元。它是网络通信过程中端点的抽象表示,包含进行网络通信必须的五种信息:连接使用的协议,本地主机的IP地址,本地进程的协议端口,远地主机的IP地址,远地进程的协议端口。
    应用层通过传输层进行数据通信时,TCP会遇到同时为 多个应用程序进程提供并发服务的问题。多个TCP连接或多个应用程序进程可能需要通过同一个TCP协议端口传输数据。 为了区别不同的应用程序进程和连接,许多计算机操作系统为应用程序与TCP/IP协议交互提供了套接字(Socket)接口。应用层可以和传输层通过Socket接口,区分来自不同应用程序进程或网络连接的通信,实现数据传输的并发服务。
  • 1. 建立socket连接:
    建立Socket连接至少需要一对套接字,其中一个运行于客户端,称为ClientSocket
    ,另一个运行于服务器端,称为ServerSocket。套接字之间的连接过程分为三个步骤:服务器监听,客户端请求,连接确认。
    2. 服务器监听: 服务器端套接字并不定位具体的客户端套接字,而是处于等待连接的状态,实时监控网络状态,等待客户端的连接请求。客户端请求: 指客户端的套接字提出连接请求,要连接的目标是服务器端的套接字。为此,客户端的套接字必须首先描述它要连接的服务器的套接字,指出服务器端套接字的地址和端口号,然后就向服务器端套接字提出连接请求。
  • 3 . 连接确认:
    当服务器端套接字监听到或者说接收到客户端套接字的连接请求时,就响应客户端套接字的请求,建立一个新的线程,把服务器端套接字的描述发给客户端,一旦客户端确认了此描述,双方就正式建立连接。而服务器端套接字继续处于监听状态,继续接收其他客户端套接字的连接请求。
  • socket编程实践

SOCKET连接与TCP/IP连接:

  • 创建Socket连接时,可以 指定使用的传输层协议(就是之前代码里面使用的bind函数),Socket可以支持不同的传输层协议(TCP或UDP),当使用TCP协议进行连接时,该Socket连接就是一个TCP连接。(Socket 可以说是TCP的封装)
  • Socket则是对TCP/IP协议的封装和应用(程序员层面上)。也可以说,TPC/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据(就像http就是两个人之间交流的统一格式)。 关于TCP/IP和HTTP协议的关系,网络有一段比较容易理解的介绍:“我们在传输数据时,可以只使用(传输层)TCP/IP协议,但是那样的话,如果没有应用层,便无法识别数据内容,如果想要使传输的数据有意义,则必须使用到应用层协议,应用层协议有很多,比如HTTP、FTP、TELNET等,也
    可以自己定义应用层协议。Web使用HTTP协议作应用层协议,以封装HTTP文本信息,然后使用TCP/IP做传输层协议将它发到网络上。
  • 我们平时说的最多的socket是什么呢实际上socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API),通过Socket,我们才能使用TCP/IP协议。实际上,Socket跟TCP/IP协议没有必然的联系。Socket编程接口在设计的时候,就希望也能适应其他的网络协议。所以说,Socket的出现只是使得程序员更方便地使用TCP/IP协议栈而已,是对TCP/IP协议的抽象,从而形成了我们知道的一些最基本的函数接口,比如create、
    listen、connect、accept、send、read和write等等。网络有一段关于socket和TCP/IP协议关系的说法比较容易理解:“TCP/IP只是一个协议栈,就像操作系统的运行机制一样,必须要具体实现,同时还要提供对外的操作接口。这个就像操作系统会提供标准的编程接口,比如win32编程接口一样,TCP/IP也要提供可供程序员做网络开发所用的接口,这就是Socket编程接口。”
  • 实际上,传输层的TCP是基于网络层的IP协议的,而应用层的HTTP协议又是基于传输层的TCP协议的,而Socket本身不算是协议,就像上面所说,它只是提供了一个针对TCP或者UDP编程的接口。socket是对端口通信开发的工具,它要更底层一些。

HTTP连接:
HTTP协议即超文本传送协议(Hypertext Transfer Protocol ),是Web联网的基础,也是手机联网常用的协议之一,HTTP协议是建立在TCP协议之上的一种应用。HTTP连接最显著的特点是客户端发送的每次请求都需要服务器回送响应,在请求结束后,会主动释放连接。从建立连接到关闭连接的过程称为“一次连接”。

  1. 在HTTP 1.0中,客户端的每次请求都要求建立一次单独的连接,在处理完本次请求后,就自动释放连接。
  2. 在HTTP 1.1中则可以在一次连接中处理多个请求,并且多个请求可以重叠进行,不需要等待一个请求结束后再发送下一个请求。

由于HTTP在每次请求结束后都会主动释放连接,因此HTTP连接是一种“短连接”,要保持客户端程序的在线状态,需要不断地向服务器发起连接请求。通常的做法是即时不需要获得任何数据,客户端也保持每隔一段固定的时间向服务器发送一次“保持连接”的请求,服务器在收到该请求后对客户端进行回复,表明知道客户端“在线”。若服务器长时间无法收到客户端的请求,则认为客户端“下线”,若客户端长时间无法收到服务器的回复,则认为网络已经断开。

Socket连接与HTTP连接:

  • 由于通常情况下Socket连接就是TCP连接,因此Socket连接一旦建立,通信双方即可开始相互发送数据内容,直到双方连接断开。但在实际网络应用中,客户端到服务器之间的通信往往需要穿越多个中间节点,例如路由器、网关、防火墙等,大部分防火墙默认会关闭长时间处于非活跃状态的连接而导致
    Socket 连接断连,因此需要通过轮询告诉网络,该连接处于活跃状态。
  • 而HTTP连接使用的是“请求—响应”的方式,不仅在请求时需要先建立连接,而且需要客户端向服务器发出请求后,服务器端才能回复数据。很多情况下,需要服务器端主动向客户端推送数据,保持客户端与服务器数据的实时与同步。此时若双方建立的是Socket连接,服务器就可以直接将数据传送给客户端;若双方建立的是HTTP连接,则服务器需要等到客户端发送一次请求后才能将数据传回给客户端,因此,客户端定时向服务器端发送连接请求,不仅可以保持在线,同时也是在“询问”服务器是否有新的数据,如果有就将数据传给客户端。
  • http协议是应用层的协义有个比较形象的描述:HTTP是轿车,提供了封装或者显示数据的具体形式;Socket是发动机,提供了网络通信的能力。两个计算机之间的交流无非是两个端口之间的数据通信,具体的数据会以什么样的形式展现是以不同的应用层协议来定义的`如HTTP、FTP…

参考博文:socket,tcp,http三者之间的区别和原理

常见面试题

1. 为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:
因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,“你发的FIN报文我收到了”。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

2. 如果已经建立了连接,但是客户端突然出现故障了怎么办?

答:
TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

3. 为什么不能用两次握手进行连接?

答:
3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

4. Socket、TCP、http 各意思?

答:
两个计算机进行网络通讯的时候用tcp协议发数据,双方就能收到数据。仅仅是收到数据但是无法解析数据。
http就是解决了浏览器和服务器通信数据的格式的解析。
socket,是支持TCP/IP协议的网络通信的最小操作单元(tcp的封装)若我们建立套接字的时候,指定用tcp连接,socket就是tcp连接

你可能感兴趣的:(Linux,开发,ARM树莓派开发,tcp/ip,http,三次握手,网络模型,socket)