目录
一、摘要........................................................................................ 6
二、引言........................................................................................ 6
三、主要研究内容......................................................................... 6
1.1 图像的预处理................................................................... 6
1.2 边缘提取........................................................................... 7
1.3 车牌边界的确定................................................................. 8
2 字符分割............................................................................... 9
3 字符识别............................................................................. 10
3.1 归一化.............................................................................. 10
3.2 匹配识别字符................................................................. 10
四、总结...................................................................................... 11
五、摘要...................................................................................... 11
六、源代码.................................................................................. 12
摘要:
简要介绍了识别技术的研究背景及其发展历程;对识别技术的常用方法进行了总结:重点对近年来车牌识别方法的研究进展进行综述;总结了现阶段存在的研究困难并提出今后的发展方向;实现了简单的车牌识别程序。
关键词:车牌识别:车牌检测:车牌定位; 车牌字符分割
引言:
随着人们生活水平的不断提高 , 机动车辆数量大幅度增加,与之相配套的高速公路,城市路网及停车场越来越多,显著提高了人们对交通控制方面的要求。由于计算机技术的发展,信息处理水平的提高使智能交通系统成为世界交通领域研究的重要课题。其中车牌识别是智能交通系统的重要组成部分。
车牌识别是利用车牌特征来鉴别车主身份成为安全验证首选方式,具有普遍性、安全性、唯一性、稳定性等。无论何种形式的车牌识别系统,它们大多都是由触发、图像采集、图像识别模块、辅助光源和通信模块组成的。图像预处理程序对抓拍的图像进行处理,去除噪声,并进行参数调整。然后通过车牌定位、字符识别,最后将识别结果输出。
车牌识别系统一般包括以下流程,如图 1 。
图1 车牌识别系统
总体内容:
(1) 车牌的定位研究。先进行图像的预处理,包括RGB彩色图像的灰度化、图像灰度拉伸、图像边缘检测、灰度图的二值化等;车牌定位采用基于水平和垂直投影分布特征的方法。
(2)字符分割的研究。先对定位后的车牌图像进行预处理,然后按照车牌的先验信息,用区域增长算法来确定候选车牌的字符区域。
(3)字符识别的研究。对于提取出的单个字符,先进行归一化操作,再与给定的模板做对比,识别出字符。
1.1 图像的预处理
一般情况下,由 CCD 采集到的图像会有不理想的情况,如光线过强,或者偏弱,这些都会对后续的图像处理产生一向。而且车牌位于车身下部,靠近散热片,对比度较差,此时若直接对灰度图像进行定位会有不小的困难,为了获得较好处理的灰度图像,在对 CCD 采集的原始图像进行灰度化后,要对其灰度转换。
首先对图像灰度拉伸,使灰度级占据0--255 整个区域,这样做的目的是为了减少光线过强,或者偏弱时造成的灰度级过少.本文直接采用直方图均衡化,这样处理简单,运算量小,效果也较理想。
1.2 边缘提取
两个具有不同灰度值的相邻区域之间总存在边缘,边缘就是灰度值不连续的结果,是图像分割、纹理特征提取和形状特征提取等图像分析的基础。为了对有意义的边缘点进行分类,与这个点相联系的灰度级必须比在这一点的背景上变换更有效,我们通过门限方法来决定一个值是否有效。所以,如果一个点的二维一阶导数比指定的门限大,我们就定义图像中的次点是一个边缘点,一组这样的依据事先定好的连接准则相连的边缘点就定义为一条边缘。经过一阶的导数的边缘检测,所求的一阶导数高于某个阈值,则确定该点为边缘点,这样会导致检测的边缘点太多。可以通过求梯度局部最大值对应的点,并认定为边缘点,去除非局部最大值,可以检测出精确的边缘。一阶导数的局部最大值对应二阶导数的零交叉点,这样通过找图像强度的二阶导数饿的零交叉点就能找到精确边缘点。
原图1
实验结果如图 2 所示
图2边缘提取后的图像
由图可见,图像经过差分二值后,车牌区域明显可见。
1.3 车牌边界的确定
由于车牌一般是由字符、背景和边框组成,提取图像的边缘图像后,在字符与背景处就形成了较强的边缘。再考虑汽车本身的特点,通常车牌位于汽车缓冲器上或附近,靠近整幅图像的下部,在往下便是路面,路面一般是比较光滑,因此可以在边缘提取时就很有效的将这部分杂质滤除掉,而使干扰图像的噪声处于车牌之上,如车灯,或散热片。由此,我们采用由下而上的扫描的方法。首先,对边缘图像的象素沿水平方向累加产生一个投影图,如图 3所示。
图 3
由投影图可以看出有车牌字符的地方,灰度值较高,而且处于图像的下部。
故此,先进行粗略定位,考虑到噪声等因素的影响,粗略将上下边界分别定义为最大值-120,最大值+50。在上下界粗定位的基础上进行精细定位,即对图像再进行水平投影,找寻大于3分之2最大值的点,记录改点所对应的横坐标的最大值和最小值,那么此两点为车牌的上下边界点
在定位出上下边界后,再对特征图像进行垂直投影,得到投影图后,对投影图进行处理,重复水平定位的理念,找寻大于3分之2最大值的点所对应的横坐标的最大值和最小值,即为车牌的左右边界点,完成定位。为了之后字符识别的更好处理,根据找寻的边界点,对该灰度增强后图进行定位。
2.字符分割
区域增长的基本思想是将具有相似性质的象素集合起来构成区域。首先在待分割的每个区域中选择一个种子点作为增长的起始点,然后在种子点的领域中搜索那些与种子点的相似特征度满足指定增长准则的象素,并与种子点所在区域合并。此时将新合并的象素作为新的种子点,继续以上搜索和合并过程,直到没有可以合并的象素为止。本文的算法中采用区域增长算法来确定候选车牌的字符区域。首先要确定起始的种子点。字符的像素值最大为 255 ,基于这个信息,选定像素值为 255 的点为起始点。然后选择下面的增长标准:假定一个像素属于一个区域,则这个像素和这个区域里至少有八个像素点是相连的。如果一个像素同时又和其他区域相连了,则这些区域合并在一起。由于光照或者背景噪声等的影响,区域增长算法可能生错误的字符区域,就需要根据前文所述的车牌先验信息来删除错误的区域 ,从而准确定位字符区域。如图 4 所示
如图 4
3.字符识别
3.1 归一化
因为扫描得到的图像的字符大小存在较大的差异,统一尺寸有助于字符识别的准确性,提高识别率,从而与模板进行匹配。归一化主要包括位置归一化、大小归一化及笔划粗细归一化。在这里本人对大小归一化。对不同大小的字符进行变换,使之成为同一尺寸大小的字符,这个过程称为字符大小归一化。通过字符大小归一化,许多特征就可以用于识别不同字号混排的字符。具体实现方法,首先对图像二值化处理,这里的阈值根据大津法得到,然后将字符的外边框按比例线性放大或缩小成为规定尺寸的字符。如图 5 所示
图 5 图像归一化
3.2 匹配识别字符
对分割出来的字符进行识别的方法很多,主要有以下几种方法:
(1)利用字符的结构特征和变换进行特征提取。该方法对字符的倾斜、变形都有很高的适应性,但运算量大,对计算机性能的要求较高。
(2)利用字符统计特征进行特征提取。如提取字符的投影特征、网格特征和轮廓特征组成字符特征矢量进行匹配的方法,识别率较高。
(3)基于字符结构分析的识别方法。该方法可以识别有较大旋转、变形、缩放的字符图像,但需要进行复杂的字符笔划分析和抽取,对字符图像质量要求较高。
(4)模板匹配法。由于车辆牌照字符中只有26个大写英文字母、10个阿拉伯数字和约50个汉字,所以字符集合较小,该方法对于有一定变形、污损或笔画缺损的字符图像有较