前言
本文是对OkHttp
开源库的一个详细解析,如果你觉得自己不够了解OkHttp
,想进一步学习一下,相信本文对你会有所帮助。
【Android源码解析】Android中高级架构进阶学习——百大框架源码解析Retrofit/OkHttp/Glide/RxJava/EventBus...._哔哩哔哩_bilibili
本文包含了详细的请求流程分析、各大拦截器解读以及自己的一点反思总结,文章很长,欢迎大家一起交流讨论。
使用方法
使用方法十分简单,分别创建一个OkHttpClient
对象,一个Request
对象,然后利用他们创建一个Call
对象,最后调用同步请求execute()
方法或者异步请求enqueue()
方法来拿到Response
。
private final OkHttpClient client = new OkHttpClient();
Request request = new Request.Builder()
.url("https://github.com/")
.build();
//同步请求
Response response = client.newCall(request).execute();
//todo handle response
//异步请求
client.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(@NotNull Call call, @NotNull IOException e) {
//todo handle request failed
}
@Override
public void onResponse(@NotNull Call call, @NotNull Response response) throws IOException {
//todo handle Response
}
});
基本对象介绍
正如使用方法中所述,我们先后构建了 OkHttpClient
对象、Request
对象、Call
对象,那这些对象都是什么意思,有什么作用呢?这个就需要我们进一步学习了解了。
OkHttpClient
一个请求的配置类,采用了建造者模式,方便用户配置一些请求参数,如配置callTimeout
,cookie
,interceptor
等等。
open class OkHttpClient internal constructor(
builder: Builder
) : Cloneable, Call.Factory, WebSocket.Factory {
constructor() : this(Builder())
class Builder constructor() {
//调度器
internal var dispatcher: Dispatcher = Dispatcher()
//连接池
internal var connectionPool: ConnectionPool = ConnectionPool()
//整体流程拦截器
internal val interceptors: MutableList = mutableListOf()
//网络流程拦截器
internal val networkInterceptors: MutableList = mutableListOf()
//流程监听器
internal var eventListenerFactory: EventListener.Factory = EventListener.NONE.asFactory()
//连接失败时是否重连
internal var retryOnConnectionFailure = true
//服务器认证设置
internal var authenticator: Authenticator = Authenticator.NONE
//是否重定向
internal var followRedirects = true
//是否从HTTP重定向到HTTPS
internal var followSslRedirects = true
//cookie设置
internal var cookieJar: CookieJar = CookieJar.NO_COOKIES
//缓存设置
internal var cache: Cache? = null
//DNS设置
internal var dns: Dns = Dns.SYSTEM
//代理设置
internal var proxy: Proxy? = null
//代理选择器设置
internal var proxySelector: ProxySelector? = null
//代理服务器认证设置
internal var proxyAuthenticator: Authenticator = Authenticator.NONE
//socket配置
internal var socketFactory: SocketFactory = SocketFactory.getDefault()
//https socket配置
internal var sslSocketFactoryOrNull: SSLSocketFactory? = null
internal var x509TrustManagerOrNull: X509TrustManager? = null
internal var connectionSpecs: List = DEFAULT_CONNECTION_SPECS
//协议
internal var protocols: List = DEFAULT_PROTOCOLS
//域名校验
internal var hostnameVerifier: HostnameVerifier = OkHostnameVerifier
internal var certificatePinner: CertificatePinner = CertificatePinner.DEFAULT
internal var certificateChainCleaner: CertificateChainCleaner? = null
//请求超时
internal var callTimeout = 0
//连接超时
internal var connectTimeout = 10_000
//读取超时
internal var readTimeout = 10_000
//写入超时
internal var writeTimeout = 10_000
internal var pingInterval = 0
internal var minWebSocketMessageToCompress = RealWebSocket.DEFAULT_MINIMUM_DEFLATE_SIZE
internal var routeDatabase: RouteDatabase? = null
···省略代码···
Request
同样是请求参数的配置类,也同样采用了建造者模式,但相比于OkHttpClient
,Request
就十分简单了,只有四个参数,分别是请求URL
、请求方法
、请求头
、请求体
。
class Request internal constructor(
@get:JvmName("url") val url: HttpUrl,
@get:JvmName("method") val method: String,
@get:JvmName("headers") val headers: Headers,
@get:JvmName("body") val body: RequestBody?,
internal val tags: Map, Any>
) {
open class Builder {
//请求的URL
internal var url: HttpUrl? = null
//请求方法,如:GET、POST..
internal var method: String
//请求头
internal var headers: Headers.Builder
//请求体
internal var body: RequestBody? = null
···省略代码···
Call
请求调用接口,表示这个请求已经准备好可以执行,也可以取消,只能执行一次。
interface Call : Cloneable {
/** 返回发起此调用的原始请求 */
fun request(): Request
/**
* 同步请求,立即执行。
*
* 抛出两种异常:
* 1. 请求失败抛出IOException;
* 2. 如果在执行过一回的前提下再次执行抛出IllegalStateException;*/
@Throws(IOException::class)
fun execute(): Response
/**
* 异步请求,将请求安排在将来的某个时间点执行。
* 如果在执行过一回的前提下再次执行抛出IllegalStateException */
fun enqueue(responseCallback: Callback)
/** 取消请求。已经完成的请求不能被取消 */
fun cancel()
/** 是否已被执行 */
fun isExecuted(): Boolean
/** 是否被取消 */
fun isCanceled(): Boolean
/** 一个完整Call请求流程的超时时间配置,默认选自[OkHttpClient.Builder.callTimeout] */
fun timeout(): Timeout
/** 克隆这个call,创建一个新的相同的Call */
public override fun clone(): Call
/** 利用工厂模式来让 OkHttpClient 来创建 Call对象 */
fun interface Factory {
fun newCall(request: Request): Call
}
}
RealCall
在 OkHttpClient
中,我们利用 newCall
方法来创建一个 Call
对象,但从源码中可以看出,newCall
方法返回的是一个 RealCall
对象。
OkHttpClient.kt
override fun newCall(request: Request): Call = RealCall(this, request, forWebSocket = false)
RealCall
是Call接口
的具体实现类,是应用端与网络层的连接桥,展示应用端原始的请求与连接数据,以及网络层返回的response
及其它数据流。 通过使用方法也可知,创建RealCall
对象后,就要调用同步或异步请求方法,所以它里面还包含同步请求 execute()
与异步请求 enqueue()
方法。(后面具体展开分析)
AsyncCall
异步请求调用,是RealCall
的一个内部类,就是一个Runnable
,被调度器中的线程池所执行。
inner class AsyncCall(
//用户传入的响应回调方法
private val responseCallback: Callback
) : Runnable {
//同一个域名的请求次数,volatile + AtomicInteger 保证在多线程下及时可见性与原子性
@Volatile var callsPerHost = AtomicInteger(0)
private set
fun reuseCallsPerHostFrom(other: AsyncCall) {
this.callsPerHost = other.callsPerHost
}
···省略代码···
fun executeOn(executorService: ExecutorService) {
client.dispatcher.assertThreadDoesntHoldLock()
var success = false
try {
//调用线程池执行
executorService.execute(this)
success = true
} catch (e: RejectedExecutionException) {
val ioException = InterruptedIOException("executor rejected")
ioException.initCause(e)
noMoreExchanges(ioException)
//请求失败,调用 Callback.onFailure() 方法
responseCallback.onFailure(this@RealCall, ioException)
} finally {
if (!success) {
//请求失败,调用调度器finish方法
client.dispatcher.finished(this) // This call is no longer running!
}
}
}
override fun run() {
threadName("OkHttp ${redactedUrl()}") {
var signalledCallback = false
timeout.enter()
try {
//请求成功,获取到服务器返回的response
val response = getResponseWithInterceptorChain()
signalledCallback = true
//调用 Callback.onResponse() 方法,将 response 传递出去
responseCallback.onResponse(this@RealCall, response)
} catch (e: IOException) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log("Callback failure for ${toLoggableString()}", Platform.INFO, e)
} else {
//请求失败,调用 Callback.onFailure() 方法
responseCallback.onFailure(this@RealCall, e)
}
} catch (t: Throwable) {
//请求出现异常,调用cancel方法来取消请求
cancel()
if (!signalledCallback) {
val canceledException = IOException("canceled due to $t")
canceledException.addSuppressed(t)
//请求失败,调用 Callback.onFailure() 方法
responseCallback.onFailure(this@RealCall, canceledException)
}
throw t
} finally {
//请求结束,调用调度器finish方法
client.dispatcher.finished(this)
}
}
}
}
Dispatcher
调度器,用来调度Call
对象,同时包含线程池与异步请求队列,用来存放与执行AsyncCall
对象。
class Dispatcher constructor() {
@get:Synchronized
@get:JvmName("executorService") val executorService: ExecutorService
get() {
if (executorServiceOrNull == null) {
//创建一个缓存线程池,来处理请求调用
executorServiceOrNull = ThreadPoolExecutor(0, Int.MAX_VALUE, 60, TimeUnit.SECONDS,
SynchronousQueue(), threadFactory("$okHttpName Dispatcher", false))
}
return executorServiceOrNull!!
}
/** 已准备好的异步请求队列 */
@get:Synchronized
private val readyAsyncCalls = ArrayDeque()
/** 正在运行的异步请求队列, 包含取消但是还未finish的AsyncCall */
private val runningAsyncCalls = ArrayDeque()
/** 正在运行的同步请求队列, 包含取消但是还未finish的RealCall */
private val runningSyncCalls = ArrayDeque()
···省略代码···
}
总结一下
对象 | 作用 |
---|---|
Call |
请求调用接口,表示这个请求已经准备好可以执行,也可以被取消,只能执行一次。 |
RealCall |
Call 接口的具体实现类,是应用与网络层之间的连接桥,包含OkHttpClient 与Request 信息。 |
AsyncCall |
异步请求调用,其实就是个Runnable ,会被放到线程池中进行处理。 |
Dispatcher |
调度器,用来调度Call 对象,同时包含线程池与异步请求队列,用来存放与执行AsyncCall 对象。 |
Request |
请求类,包含url 、method 、headers 、body 。 |
Response |
网络层返回的响应数据。 |
Callback |
响应回调函数接口,包含onFailure 、onResponse 两个方法。 |
流程分析
介绍完了对象,接下来就根据使用方法,具体看一下源码吧。
同步请求
同步请求的使用方法。
client.newCall(request).execute();
newCall
方法就是创建一个RealCall
对象,然后执行其execute()
方法。
RealCall.kt
override fun execute(): Response {
//CAS判断是否已经被执行了, 确保只能执行一次,如果已经执行过,则抛出异常
check(executed.compareAndSet(false, true)) { "Already Executed" }
//请求超时开始计时
timeout.enter()
//开启请求监听
callStart()
try {
//调用调度器中的 executed() 方法,调度器只是将 call 加入到了runningSyncCalls队列中
client.dispatcher.executed(this)
//调用getResponseWithInterceptorChain 方法拿到 response
return getResponseWithInterceptorChain()
} finally {
//执行完毕,调度器将该 call 从 runningSyncCalls队列中移除
client.dispatcher.finished(this)
}
}
调用调度器executed
方法,就是将当前的RealCall
对象加入到runningSyncCalls
队列中,然后调用getResponseWithInterceptorChain
方法拿到response
。
异步请求
在来看看异步请求。
RealCall.kt
override fun enqueue(responseCallback: Callback) {
//CAS判断是否已经被执行了, 确保只能执行一次,如果已经执行过,则抛出异常
check(executed.compareAndSet(false, true)) { "Already Executed" }
//开启请求监听
callStart()
//新建一个AsyncCall对象,通过调度器enqueue方法加入到readyAsyncCalls队列中
client.dispatcher.enqueue(AsyncCall(responseCallback))
}
然后调用调度器的enqueue
方法,
Dispatcher.kt
internal fun enqueue(call: AsyncCall) {
//加锁,保证线程安全
synchronized(this) {
//将该请求调用加入到 readyAsyncCalls 队列中
readyAsyncCalls.add(call)
// Mutate the AsyncCall so that it shares the AtomicInteger of an existing running call to
// the same host.
if (!call.call.forWebSocket) {
//通过域名来查找有没有相同域名的请求,有则复用。
val existingCall = findExistingCallWithHost(call.host)
if (existingCall != null) call.reuseCallsPerHostFrom(existingCall)
}
}
//执行请求
promoteAndExecute()
}
private fun promoteAndExecute(): Boolean {
this.assertThreadDoesntHoldLock()
val executableCalls = mutableListOf()
//判断是否有请求正在执行
val isRunning: Boolean
//加锁,保证线程安全
synchronized(this) {
//遍历 readyAsyncCalls 队列
val i = readyAsyncCalls.iterator()
while (i.hasNext()) {
val asyncCall = i.next()
//runningAsyncCalls 的数量不能大于最大并发请求数 64
if (runningAsyncCalls.size >= this.maxRequests) break // Max capacity.
//同域名最大请求数5,同一个域名最多允许5条线程同时执行请求
if (asyncCall.callsPerHost.get() >= this.maxRequestsPerHost) continue // Host max capacity.
//从 readyAsyncCalls 队列中移除,并加入到 executableCalls 及 runningAsyncCalls 队列中
i.remove()
asyncCall.callsPerHost.incrementAndGet()
executableCalls.add(asyncCall)
runningAsyncCalls.add(asyncCall)
}
//通过运行队列中的请求数量来判断是否有请求正在执行
isRunning = runningCallsCount() > 0
}
//遍历可执行队列,调用线程池来执行AsyncCall
for (i in 0 until executableCalls.size) {
val asyncCall = executableCalls[i]
asyncCall.executeOn(executorService)
}
return isRunning
}
调度器的enqueue
方法就是将AsyncCall
加入到readyAsyncCalls
队列中,然后调用promoteAndExecute
方法来执行请求,promoteAndExecute
方法做的其实就是遍历readyAsyncCalls
队列,然后将符合条件的请求用线程池执行,也就是会执行AsyncCall.run()
方法。
AsyncCall 方法的具体代码看基本对象介绍 AsyncCall,这边就不在此展示了,简单来说就是调用getResponseWithInterceptorChain
方法拿到response
,然后通过Callback.onResponse
方法传递出去。反之,如果请求失败,捕获了异常,就通过Callback.onFailure
将异常信息传递出去。 最终,请求结束,调用调度器finish
方法。
Dispatcher.kt
/** 异步请求调用结束方法 */
internal fun finished(call: AsyncCall) {
call.callsPerHost.decrementAndGet()
finished(runningAsyncCalls, call)
}
/** 同步请求调用结束方法 */
internal fun finished(call: RealCall) {
finished(runningSyncCalls, call)
}
private fun finished(calls: Deque, call: T) {
val idleCallback: Runnable?
synchronized(this) {
//将当前请求调用从 正在运行队列 中移除
if (!calls.remove(call)) throw AssertionError("Call wasn't in-flight!")
idleCallback = this.idleCallback
}
//继续执行剩余请求,将call从readyAsyncCalls中取出加入到runningAsyncCalls,然后执行
val isRunning = promoteAndExecute()
if (!isRunning && idleCallback != null) {
//如果执行完了所有请求,处于闲置状态,调用闲置回调方法
idleCallback.run()
}
}
获取Response
接着就是看看getResponseWithInterceptorChain
方法是如何拿到response
的。
internal fun getResponseWithInterceptorChain(): Response {
//拦截器列表
val interceptors = mutableListOf()
interceptors += client.interceptors
interceptors += RetryAndFollowUpInterceptor(client)
interceptors += BridgeInterceptor(client.cookieJar)
interceptors += CacheInterceptor(client.cache)
interceptors += ConnectInterceptor
if (!forWebSocket) {
interceptors += client.networkInterceptors
}
interceptors += CallServerInterceptor(forWebSocket)
//构建拦截器责任链
val chain = RealInterceptorChain(
call = this,
interceptors = interceptors,
index = 0,
exchange = null,
request = originalRequest,
connectTimeoutMillis = client.connectTimeoutMillis,
readTimeoutMillis = client.readTimeoutMillis,
writeTimeoutMillis = client.writeTimeoutMillis
)
//如果call请求完成,那就意味着交互完成了,没有更多的东西来交换了
var calledNoMoreExchanges = false
try {
//执行拦截器责任链来获取 response
val response = chain.proceed(originalRequest)
//如果被取消,关闭响应,抛出异常
if (isCanceled()) {
response.closeQuietly()
throw IOException("Canceled")
}
return response
} catch (e: IOException) {
calledNoMoreExchanges = true
throw noMoreExchanges(e) as Throwable
} finally {
if (!calledNoMoreExchanges) {
noMoreExchanges(null)
}
}
}
简单概括一下:这里采用了责任链设计模式
,通过拦截器构建了以RealInterceptorChain
责任链,然后执行proceed
方法来得到response
。
那么,这又涉及拦截器是什么?拦截器责任链又是什么?
Interceptor
只声明了一个拦截器方法,在子类中具体实现,还包含一个Chain
接口,核心方法是proceed(request)
处理请求来获取response
。
fun interface Interceptor {
/** 拦截方法 */
@Throws(IOException::class)
fun intercept(chain: Chain): Response
interface Chain {
/** 原始请求数据 */
fun request(): Request
/** 核心方法,处理请求,获取response */
@Throws(IOException::class)
fun proceed(request: Request): Response
fun connection(): Connection?
fun call(): Call
fun connectTimeoutMillis(): Int
fun withConnectTimeout(timeout: Int, unit: TimeUnit): Chain
fun readTimeoutMillis(): Int
fun withReadTimeout(timeout: Int, unit: TimeUnit): Chain
fun writeTimeoutMillis(): Int
fun withWriteTimeout(timeout: Int, unit: TimeUnit): Chain
}
}
RealInterceptorChain
拦截器链就是实现Interceptor.Chain
接口,重点就是复写的proceed
方法。
class RealInterceptorChain(
internal val call: RealCall,
private val interceptors: List,
private val index: Int,
internal val exchange: Exchange?,
internal val request: Request,
internal val connectTimeoutMillis: Int,
internal val readTimeoutMillis: Int,
internal val writeTimeoutMillis: Int
) : Interceptor.Chain {
···省略代码···
private var calls: Int = 0
override fun call(): Call = call
override fun request(): Request = request
@Throws(IOException::class)
override fun proceed(request: Request): Response {
check(index < interceptors.size)
calls++
if (exchange != null) {
check(exchange.finder.sameHostAndPort(request.url)) {
"network interceptor ${interceptors[index - 1]} must retain the same host and port"
}
check(calls == 1) {
"network interceptor ${interceptors[index - 1]} must call proceed() exactly once"
}
}
//index+1, 复制创建新的责任链,也就意味着调用责任链中的下一个处理者,也就是下一个拦截器
val next = copy(index = index + 1, request = request)
//取出当前拦截器
val interceptor = interceptors[index]
//执行当前拦截器的拦截方法
@Suppress("USELESS_ELVIS")
val response = interceptor.intercept(next) ?: throw NullPointerException(
"interceptor $interceptor returned null")
if (exchange != null) {
check(index + 1 >= interceptors.size || next.calls == 1) {
"network interceptor $interceptor must call proceed() exactly once"
}
}
check(response.body != null) { "interceptor $interceptor returned a response with no body" }
return response
}
}
链式调用,最终会执行拦截器列表中的每个拦截器,返回Response
。
拦截器
OK,接下来就该看看拦截器列表中的具体拦截器了。
先上各类拦截器的总结,按顺序:
-
client.interceptors
:这是由开发者设置的,会在所有的拦截器处理之前进行最早的拦截处理,可用于添加一些公共参数,如自定义header
、自定义log
等等。 -
RetryAndFollowUpInterceptor
:这里会对连接做一些初始化工作,以及请求失败的重试工作,重定向的后续请求工作。跟他的名字一样,就是做重试工作还有一些连接跟踪工作。 -
BridgeInterceptor
:是客户端与服务器之间的沟通桥梁,负责将用户构建的请求转换为服务器需要的请求,以及将网络请求返回回来的响应转换为用户可用的响应。 -
CacheInterceptor
:这里主要是缓存的相关处理,会根据用户在OkHttpClient
里定义的缓存配置,然后结合请求新建一个缓存策略,由它来判断是使用网络还是缓存来构建response
。 -
ConnectInterceptor
:这里主要就是负责建立连接,会建立TCP连接
或者TLS连接
。 -
client.networkInterceptors
:这里也是开发者自己设置的,所以本质上和第一个拦截器差不多,但是由于位置不同,所以用处也不同。 -
CallServerInterceptor
:这里就是进行网络数据的请求和响应了,也就是实际的网络I/O操作,将请求头与请求体发送给服务器,以及解析服务器返回的response
。
接下来我们按顺序,从上往下,对这些拦截器进行一一解读。
client.interceptors
这是用户自己定义的拦截器,称为应用拦截器,会保存在OkHttpClient
的interceptors: List
列表中。 他是拦截器责任链中的第一个拦截器,也就是说会第一个执行拦截方法,我们可以通过它来添加自定义Header信息
,如:
class HeaderInterceptor implements Interceptor {
@Override
public Response intercept(Chain chain) throws IOException {
Request request = chain.request().newBuilder()
.addHeader("device-android", "xxxxxxxxxxx")
.addHeader("country-code", "ZH")
.build();
return chain.proceed(request);
}
}
//然后在 OkHttpClient 中加入
OkHttpClient client = new OkHttpClient.Builder()
.connectTimeout(60, TimeUnit.SECONDS)
.readTimeout(15, TimeUnit.SECONDS)
.writeTimeout(15, TimeUnit.SECONDS)
.cookieJar(new MyCookieJar())
.addInterceptor(new HeaderInterceptor())//添加自定义Header拦截器
.build();
RetryAndFollowUpInterceptor
第二个拦截器,从它的名字也可知道,它负责请求失败的重试工作与重定向的后续请求工作,同时它会对连接做一些初始化工作。
class RetryAndFollowUpInterceptor(private val client: OkHttpClient) : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
var request = chain.request
val call = realChain.call
var followUpCount = 0
var priorResponse: Response? = null
var newExchangeFinder = true
var recoveredFailures = listOf()
while (true) {
//这里会新建一个ExchangeFinder,ConnectInterceptor会使用到
call.enterNetworkInterceptorExchange(request, newExchangeFinder)
var response: Response
var closeActiveExchange = true
try {
if (call.isCanceled()) {
throw IOException("Canceled")
}
try {
response = realChain.proceed(request)
newExchangeFinder = true
} catch (e: RouteException) {
//尝试通过路由连接失败。该请求将不会被发送。
if (!recover(e.lastConnectException, call, request, requestSendStarted = false)) {
throw e.firstConnectException.withSuppressed(recoveredFailures)
} else {
recoveredFailures += e.firstConnectException
}
newExchangeFinder = false
continue
} catch (e: IOException) {
//尝试与服务器通信失败。该请求可能已发送。
if (!recover(e, call, request, requestSendStarted = e !is ConnectionShutdownException)) {
throw e.withSuppressed(recoveredFailures)
} else {
recoveredFailures += e
}
newExchangeFinder = false
continue
}
// Attach the prior response if it exists. Such responses never have a body.
//尝试关联上一个response,注意:body是为null
if (priorResponse != null) {
response = response.newBuilder()
.priorResponse(priorResponse.newBuilder()
.body(null)
.build())
.build()
}
val exchange = call.interceptorScopedExchange
//会根据 responseCode 来判断,构建一个新的request并返回来重试或者重定向
val followUp = followUpRequest(response, exchange)
if (followUp == null) {
if (exchange != null && exchange.isDuplex) {
call.timeoutEarlyExit()
}
closeActiveExchange = false
return response
}
//如果请求体是一次性的,不需要再次重试
val followUpBody = followUp.body
if (followUpBody != null && followUpBody.isOneShot()) {
closeActiveExchange = false
return response
}
response.body?.closeQuietly()
//最大重试次数,不同的浏览器是不同的,比如:Chrome为21,Safari则是16
if (++followUpCount > MAX_FOLLOW_UPS) {
throw ProtocolException("Too many follow-up requests: $followUpCount")
}
request = followUp
priorResponse = response
} finally {
call.exitNetworkInterceptorExchange(closeActiveExchange)
}
}
}
/** 判断是否要进行重连,false->不尝试重连;true->尝试重连。*/
private fun recover(
e: IOException,
call: RealCall,
userRequest: Request,
requestSendStarted: Boolean
): Boolean {
//客户端禁止重试
if (!client.retryOnConnectionFailure) return false
//不能再次发送该请求体
if (requestSendStarted && requestIsOneShot(e, userRequest)) return false
//发生的异常是致命的,无法恢复,如:ProtocolException
if (!isRecoverable(e, requestSendStarted)) return false
//没有更多的路由来尝试重连
if (!call.retryAfterFailure()) return false
// 对于失败恢复,使用带有新连接的相同路由选择器
return true
}
···省略代码···
BridgeInterceptor
从它的名字可以看出,他的定位是客户端与服务器之间的沟通桥梁,负责将用户构建的请求转换为服务器需要的请求,比如:添加 Content-Type
,添加 Cookie
,添加User-Agent
等等。再将服务器返回的response
做一些处理转换为客户端需要的response
。比如:移除响应头中的Content-Encoding
、Content-Length
等等。
class BridgeInterceptor(private val cookieJar: CookieJar) : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
//获取原始请求数据
val userRequest = chain.request()
val requestBuilder = userRequest.newBuilder()
//重新构建请求头,请求体信息
val body = userRequest.body
val contentType = body.contentType()
requestBuilder.header("Content-Type", contentType.toString())
requestBuilder.header("Content-Length", contentLength.toString())
requestBuilder.header("Transfer-Encoding", "chunked")
requestBuilder.header("Host", userRequest.url.toHostHeader())
requestBuilder.header("Connection", "Keep-Alive")
···省略代码···
//添加cookie
val cookies = cookieJar.loadForRequest(userRequest.url)
if (cookies.isNotEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies))
}
//添加user-agent
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", userAgent)
}
//重新构建一个Request,然后执行下一个拦截器来处理该请求
val networkResponse = chain.proceed(requestBuilder.build())
cookieJar.receiveHeaders(userRequest.url, networkResponse.headers)
//创建一个新的responseBuilder,目的是将原始请求数据构建到response中
val responseBuilder = networkResponse.newBuilder()
.request(userRequest)
if (transparentGzip &&
"gzip".equals(networkResponse.header("Content-Encoding"), ignoreCase = true) &&
networkResponse.promisesBody()) {
val responseBody = networkResponse.body
if (responseBody != null) {
val gzipSource = GzipSource(responseBody.source())
val strippedHeaders = networkResponse.headers.newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build()
//修改response header信息,移除Content-Encoding,Content-Length信息
responseBuilder.headers(strippedHeaders)
val contentType = networkResponse.header("Content-Type")
//修改response body信息
responseBuilder.body(RealResponseBody(contentType, -1L, gzipSource.buffer()))
}
}
return responseBuilder.build()
···省略代码···
CacheInterceptor
用户可以通过OkHttpClient.cache
来配置缓存,缓存拦截器通过CacheStrategy
来判断是使用网络还是缓存来构建response
。
class CacheInterceptor(internal val cache: Cache?) : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val call = chain.call()
//通过request从OkHttpClient.cache中获取缓存
val cacheCandidate = cache?.get(chain.request())
val now = System.currentTimeMillis()
//创建一个缓存策略,用来确定怎么使用缓存
val strategy = CacheStrategy.Factory(now, chain.request(), cacheCandidate).compute()
//为空表示不使用网络,反之,则表示使用网络
val networkRequest = strategy.networkRequest
//为空表示不使用缓存,反之,则表示使用缓存
val cacheResponse = strategy.cacheResponse
//追踪网络与缓存的使用情况
cache?.trackResponse(strategy)
val listener = (call as? RealCall)?.eventListener ?: EventListener.NONE
//有缓存但不适用,关闭它
if (cacheCandidate != null && cacheResponse == null) {
cacheCandidate.body?.closeQuietly()
}
//如果网络被禁止,但是缓存又是空的,构建一个code为504的response,并返回
if (networkRequest == null && cacheResponse == null) {
return Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(HTTP_GATEWAY_TIMEOUT)
.message("Unsatisfiable Request (only-if-cached)")
.body(EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build().also {
listener.satisfactionFailure(call, it)
}
}
//如果我们禁用了网络不使用网络,且有缓存,直接根据缓存内容构建并返回response
if (networkRequest == null) {
return cacheResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build().also {
listener.cacheHit(call, it)
}
}
//为缓存添加监听
if (cacheResponse != null) {
listener.cacheConditionalHit(call, cacheResponse)
} else if (cache != null) {
listener.cacheMiss(call)
}
var networkResponse: Response? = null
try {
//责任链往下处理,从服务器返回response 赋值给 networkResponse
networkResponse = chain.proceed(networkRequest)
} finally {
//捕获I/O或其他异常,请求失败,networkResponse为空,且有缓存的时候,不暴露缓存内容。
if (networkResponse == null && cacheCandidate != null) {
cacheCandidate.body?.closeQuietly()
}
}
//如果有缓存
if (cacheResponse != null) {
//且网络返回response code为304的时候,使用缓存内容新构建一个Response返回。
if (networkResponse?.code == HTTP_NOT_MODIFIED) {
val response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers, networkResponse.headers))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis)
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis)
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
networkResponse.body!!.close()
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache!!.trackConditionalCacheHit()
cache.update(cacheResponse, response)
return response.also {
listener.cacheHit(call, it)
}
} else {
//否则关闭缓存响应体
cacheResponse.body?.closeQuietly()
}
}
//构建网络请求的response
val response = networkResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
//如果cache不为null,即用户在OkHttpClient中配置了缓存,则将上一步新构建的网络请求response存到cache中
if (cache != null) {
//根据response的code,header以及CacheControl.noStore来判断是否可以缓存
if (response.promisesBody() && CacheStrategy.isCacheable(response, networkRequest)) {
// 将该response存入缓存
val cacheRequest = cache.put(response)
return cacheWritingResponse(cacheRequest, response).also {
if (cacheResponse != null) {
listener.cacheMiss(call)
}
}
}
//根据请求方法来判断缓存是否有效,只对Get请求进行缓存,其它方法的请求则移除
if (HttpMethod.invalidatesCache(networkRequest.method)) {
try {
//缓存无效,将该请求缓存从client缓存配置中移除
cache.remove(networkRequest)
} catch (_: IOException) {
// The cache cannot be written.
}
}
}
return response
}
···省略代码···
ConnectInterceptor
负责实现与服务器真正建立起连接,
object ConnectInterceptor : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
//初始化一个exchange对象
val exchange = realChain.call.initExchange(chain)
//根据这个exchange对象来复制创建一个新的连接责任链
val connectedChain = realChain.copy(exchange = exchange)
//执行该连接责任链
return connectedChain.proceed(realChain.request)
}
}
一扫下来,代码十分简单,拦截方法里就只有三步。
- 初始化一个
exchange
对象。 - 然后根据这个
exchange
对象来复制创建一个新的连接责任链。 - 执行该连接责任链。
那这个exchange
对象又是什么呢?
RealCall.kt
internal fun initExchange(chain: RealInterceptorChain): Exchange {
...省略代码...
//这里的exchangeFinder就是在RetryAndFollowUpInterceptor中创建的
val exchangeFinder = this.exchangeFinder!!
//返回一个ExchangeCodec(是个编码器,为request编码以及为response解码)
val codec = exchangeFinder.find(client, chain)
//根据exchangeFinder与codec新构建一个Exchange对象,并返回
val result = Exchange(this, eventListener, exchangeFinder, codec)
...省略代码...
return result
}
具体看看ExchangeFinder.find()
这一步,
ExchangeFinder.kt
fun find(
client: OkHttpClient,
chain: RealInterceptorChain
): ExchangeCodec {
try {
//查找合格可用的连接,返回一个 RealConnection 对象
val resultConnection = findHealthyConnection(
connectTimeout = chain.connectTimeoutMillis,
readTimeout = chain.readTimeoutMillis,
writeTimeout = chain.writeTimeoutMillis,
pingIntervalMillis = client.pingIntervalMillis,
connectionRetryEnabled = client.retryOnConnectionFailure,
doExtensiveHealthChecks = chain.request.method != "GET"
)
//根据连接,创建并返回一个请求响应编码器:Http1ExchangeCodec 或者 Http2ExchangeCodec,分别对应Http1协议与Http2协议
return resultConnection.newCodec(client, chain)
} catch (e: RouteException) {
trackFailure(e.lastConnectException)
throw e
} catch (e: IOException) {
trackFailure(e)
throw RouteException(e)
}
}
继续往下看findHealthyConnection
方法
ExchangeFinder.kt
private fun findHealthyConnection(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean,
doExtensiveHealthChecks: Boolean
): RealConnection {
while (true) {
//重点:查找连接
val candidate = findConnection(
connectTimeout = connectTimeout,
readTimeout = readTimeout,
writeTimeout = writeTimeout,
pingIntervalMillis = pingIntervalMillis,
connectionRetryEnabled = connectionRetryEnabled
)
//检查该连接是否合格可用,合格则直接返回该连接
if (candidate.isHealthy(doExtensiveHealthChecks)) {
return candidate
}
//如果该连接不合格,标记为不可用,从连接池中移除
candidate.noNewExchanges()
...省略代码...
}
}
简单概括一下就是:通过findConnection
方法来查找连接,找到连接后判断是否是合格可用的,合格就直接返回该连接。
所以核心方法就是findConnection
,我们继续深入看看该方法:
private fun findConnection(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean
): RealConnection {
if (call.isCanceled()) throw IOException("Canceled")
//第一次,尝试重连 call 中的 connection,不需要去重新获取连接
val callConnection = call.connection // This may be mutated by releaseConnectionNoEvents()!
if (callConnection != null) {
var toClose: Socket? = null
synchronized(callConnection) {
if (callConnection.noNewExchanges || !sameHostAndPort(callConnection.route().address.url)) {
toClose = call.releaseConnectionNoEvents()
}
}
//如果 call 中的 connection 还没有释放,就重用它。
if (call.connection != null) {
check(toClose == null)
return callConnection
}
//如果 call 中的 connection 已经被释放,关闭Socket.
toClose?.closeQuietly()
eventListener.connectionReleased(call, callConnection)
}
//需要一个新的连接,所以重置一些状态
refusedStreamCount = 0
connectionShutdownCount = 0
otherFailureCount = 0
//第二次,尝试从连接池中获取一个连接,不带路由,不带多路复用
if (connectionPool.callAcquirePooledConnection(address, call, null, false)) {
val result = call.connection!!
eventListener.connectionAcquired(call, result)
return result
}
//连接池中是空的,准备下次尝试连接的路由
val routes: List?
val route: Route
...省略代码...
//第三次,再次尝试从连接池中获取一个连接,带路由,不带多路复用
if (connectionPool.callAcquirePooledConnection(address, call, routes, false)) {
val result = call.connection!!
eventListener.connectionAcquired(call, result)
return result
}
route = localRouteSelection.next()
}
//第四次,手动创建一个新连接
val newConnection = RealConnection(connectionPool, route)
call.connectionToCancel = newConnection
try {
newConnection.connect(
connectTimeout,
readTimeout,
writeTimeout,
pingIntervalMillis,
connectionRetryEnabled,
call,
eventListener
)
} finally {
call.connectionToCancel = null
}
call.client.routeDatabase.connected(newConnection.route())
//第五次,再次尝试从连接池中获取一个连接,带路由,带多路复用。
//这一步主要是为了校验一下,比如已经有了一条连接了,就可以直接复用,而不用使用手动创建的新连接。
if (connectionPool.callAcquirePooledConnection(address, call, routes, true)) {
val result = call.connection!!
nextRouteToTry = route
newConnection.socket().closeQuietly()
eventListener.connectionAcquired(call, result)
return result
}
synchronized(newConnection) {
//将手动创建的新连接放入连接池
connectionPool.put(newConnection)
call.acquireConnectionNoEvents(newConnection)
}
eventListener.connectionAcquired(call, newConnection)
return newConnection
}
在代码中可以看出,一共做了5次尝试去得到连接:
- 第一次,尝试重连 call 中的 connection,不需要去重新获取连接。
- 第二次,尝试从连接池中获取一个连接,不带路由,不带多路复用。
- 第三次,再次尝试从连接池中获取一个连接,带路由,不带多路复用。
- 第四次,手动创建一个新连接。
- 第五次,再次尝试从连接池中获取一个连接,带路由,带多路复用。
OK,到了这一步,就算建立起了连接。
client.networkInterceptors
该拦截器称为网络拦截器,与client.interceptors
一样也是由用户自己定义的,同样是以列表的形式存在OkHttpClient
中。
那这两个拦截器有什么不同呢?
其实他两的不同都是由于他们所处的位置不同所导致的,应用拦截器处于第一个位置,所以无论如何它都会被执行,而且只会执行一次。而网络拦截器处于倒数第二的位置,它不一定会被执行,而且可能会被执行多次,比如:在RetryAndFollowUpInterceptor
失败或者CacheInterceptor
直接返回缓存的情况下,我们的网络拦截器是不会被执行的。
CallServerInterceptor
到了这里,客户端与服务器已经建立好了连接,接着就是将请求头与请求体发送给服务器,以及解析服务器返回的response
了。
class CallServerInterceptor(private val forWebSocket: Boolean) : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
val exchange = realChain.exchange!!
val request = realChain.request
val requestBody = request.body
var invokeStartEvent = true
var responseBuilder: Response.Builder? = null
try {
//写入请求头
exchange.writeRequestHeaders(request)
//如果不是GET请求,并且请求体不为空
if (HttpMethod.permitsRequestBody(request.method) && requestBody != null) {
//当请求头为"Expect: 100-continue"时,在发送请求体之前需要等待服务器返回"HTTP/1.1 100 Continue" 的response,如果没有等到该response,就不发送请求体。
//POST请求,先发送请求头,在获取到100继续状态后继续发送请求体
if ("100-continue".equals(request.header("Expect"), ignoreCase = true)) {
//刷新请求,即发送请求头
exchange.flushRequest()
//解析响应头
responseBuilder = exchange.readResponseHeaders(expectContinue = true)
exchange.responseHeadersStart()
invokeStartEvent = false
}
//写入请求体
if (responseBuilder == null) {
if (requestBody.isDuplex()) {
//如果请求体是双公体,就先发送请求头,稍后在发送请求体
exchange.flushRequest()
val bufferedRequestBody = exchange.createRequestBody(request, true).buffer()
//写入请求体
requestBody.writeTo(bufferedRequestBody)
} else {
//如果获取到了"Expect: 100-continue"响应,写入请求体
val bufferedRequestBody = exchange.createRequestBody(request, false).buffer()
requestBody.writeTo(bufferedRequestBody)
bufferedRequestBody.close()
}
···省略代码···
//请求结束,发送请求体
exchange.finishRequest()
···省略代码···
try {
if (responseBuilder == null) {
//读取响应头
responseBuilder = exchange.readResponseHeaders(expectContinue = false)!!
···省略代码···
//构建一个response
var response = responseBuilder
.request(request)
.handshake(exchange.connection.handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build()
var code = response.code
···省略代码···
return response
···省略代码···
简单概括一下:写入发送请求头,然后根据条件是否写入发送请求体,请求结束。解析服务器返回的请求头,然后构建一个新的response
,并返回。 这里CallServerInterceptor
是拦截器责任链中最后一个拦截器了,所以他不会再调用chain.proceed()
方法往下执行,而是将这个构建的response
往上传递给责任链中的每个拦截器。
总结
我们分析了请求的流程,包括同步请求与异步请求,还仔细分析了拦截器责任链中的每个拦截器,现在画一个流程图,简单总结一下,你可以对照着流程图,在走一遍流程。
反思
设计模式
- 建造者模式:不论是在
OkHttpClient
、Request
还是Response
中都用到了建造者模式,因为这几个类中都有很多参数,需要供用户选择需要的参数来构建其想要的实例,所以在开源库中,Build模式
是很常见的。 - 工厂方法模式:帮助生成复杂对象,如:
OkHttpClient.newCall(request Request) 来创建 Call 对象
。 - 责任链模式:这个就用的很绝妙了,将7个拦截器构成拦截器责任链,然后按顺序从上往下执行,得到
Response
后,从下往上传回去。
线程安全
在 AsyncCall
类中的 callsPerHost
变量,使用了 Volatile
+ AtomicInteger
来修饰,从而保证在多线程下的线程安全。至于为什么?可以参考我的另一篇文章Android程序员重头学Volatile,这里就不展开了。
inner class AsyncCall(
private val responseCallback: Callback
) : Runnable {
//同一个域名的请求次数,volatile + AtomicInteger 保证在多线程下及时可见性与原子性
@Volatile var callsPerHost = AtomicInteger(0)
private set
...省略代码...
数据结构
为什么
readyAsyncCalls
runningAsyncCalls
runningSyncCalls
采用ArrayDeque
呢?
两个点回答:一、他们都是用来存放网络请求的,这些请求需要做到先到先得,所以采用队列。二、根据代码所示,当执行enqueue
时,我们需要遍历readyAsyncCalls
,将符合执行条件的Call
加入到runningAsyncCalls
,这相对比于链表来说,数组的查找效率要更高,所以采用ArrayDeque
。
结尾
到此,关于OkHttp
的源码解析就介绍啦。
其实学习源码的最好方式,就是自己将代码克隆下来,然后对着使用方法,按流程,一步一步往下走。这里你可以参考OkHttp 详细代码注释。
其实分享文章的最大目的正是等待着有人指出我的错误,如果你发现哪里有错误,请毫无保留的指出即可,虚心请教。 另外,如果你觉得文章不错,对你有所帮助,请给我点个赞,就当鼓励,谢谢~Peace~!
【Android源码解析】Android中高级架构进阶学习——百大框架源码解析Retrofit/OkHttp/Glide/RxJava/EventBus...._哔哩哔哩_bilibili
本文转自 https://juejin.cn/post/7033307467199021086,如有侵权,请联系删除。