62. Unique Paths 不同路径

题目链接
tag:

  • Medium;
  • DP;

question:
  A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?



Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:

  1. Right -> Right -> Down
  2. Right -> Down -> Right
  3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

思路:
  这道题让求所有不同的路径,每次可以向下走或者向右走,求到达最右下角的所有不同走法的个数。那么跟爬梯子问题一样,我们可以用动态规划Dynamic Programming来解,我们可以维护一个二维数组dp,其中dp[i][j]表示到当前位置不同的走法的个数,然后可以得到递推式为: dp[i][j] = dp[i - 1][j] + dp[i][j - 1],为了节省空间,我们使用一维数组dp,一行一行的刷新也可以,代码如下:

class Solution {
public:
    int uniquePaths(int m, int n) {
        /*
        // DP with 1 dimensions array  
        if(m<=0 || n<=0)
            return 0;
        vector dp(n,0);
        dp[0] = 1;
        for(int i=0; i

你可能感兴趣的:(62. Unique Paths 不同路径)