- 自立自强的江铃集团新能源,用科技创新实力圈粉
微视资讯
汽车
汽车行业正在经历从价格竞争和配置堆砌,向技术回归的深刻转型。消费者对“冰箱、彩电、大沙发”式的噱头已经逐渐失去兴趣,取而代之的是对核心技术和安全性能的理性关注。在这样的背景下,江铃集团新能源凭借深厚的技术积累和创新能力迅速赢得市场认可。作为拥有56年造车经验的企业,江铃集团新能源在整车研发、智能制造、智能网联、三电技术和车身轻量化等领域全面突破,不仅成功定位于纯电市场,还通过前瞻性的创新战略实现了
- SDN架构解密:控制面如何“指挥”万亿级网络? ——基于“大脑-四肢”模型的三层架构深度解析
不想加班的码小牛
网络架构人工智能ai
摘要本文以“大脑-四肢”类比SDN三层架构,揭示控制器如何通过全局视图管理、南向接口标准化(如OpenFlow)与北向API开放能力,实现对万亿级网络的集中化控制。文中包含OpenFlow协议代码示例、网络拓扑公式及架构图,力求呈现技术细节与实战价值。一、SDN架构的“大脑-四肢”隐喻SDN通过控制平面-数据平面-应用平面的三层架构,构建了网络控制的“中枢神经系统”:控制层(大脑):集中式控制器掌
- 如何自己做奶茶,从此告别奶茶店
wmq163
生活奶茶生活
自制大白兔奶茶,奶香与茶香激情碰撞,每一口都是香浓与甜蜜的双重诱惑,好喝到跺脚!丝滑口感在舌尖舞动,仿佛味蕾在开派对。简单几步就能复刻,成本超低,轻松在家享受奶茶自由。材料:大白兔奶糖,红茶叶,牛奶做法:锅里加入适量的水,放入奶糖和茶叶小火炒至奶糖融化,再加入牛奶搅拌均匀倒出过滤就完成啦。(水15ml,茶叶5g,牛奶400ml左右,大家可根据个人口味加入适量的材料)
- AUTOSAR从入门到精通-汽车电子电气架构(EEA)
格图素书
汽车
目录前言算法原理EEA发展历程->分布式架构(distributed):->基于域的集中式架构(DCUbasedcentralized):->基于域融合的带状架构(DCUfusionbasedzonal):什么是电子电气架构?EEA的特点EEA发展的三大阶段特征第一阶段:分布式架构第二阶段:基于域的集中式架构(转型中)第三阶段:基于域融合的带状架构(未来趋势)车载电子电气架构作用EEA开发工作内容
- Transformer架构在生成式AI中的应用解析
二进制独立开发
非纯粹GenAI人工智能transformer架构深度学习机器学习tensorflow迁移学习
文章目录1.Transformer架构概述1.1Transformer的核心思想1.2Transformer架构的优势2.Transformer在文本生成中的应用2.1GPT系列:基于Transformer的自回归文本生成2.2BERT系列:基于Transformer的双向编码器3.Transformer在图像生成中的应用3.1VisionTransformer(ViT)3.2DALL·E:基于T
- 【大一新生必收藏系列】❤机器学习7大方面,30个数据集。纯干货分享❤
.Boss.
机器学习人工智能python算法开发语言笔记#大一新生
.记住了就可以跟同学装起来了嗷....目录.纯干货回归问题分类问题图像分类文本情感分析自然语言处理自动驾驶金融类...........纯干货..................在刚刚开始学习算法的时候,大家有没有过这种感觉,最最重要的那必须是算法本身!其实在一定程度上忽略了数据的重要性。而事实上一定是,质量高的数据集可能是最重要的!数据集在机器学习算法项目中具有非常关键的重要性,数据集的大小、质量
- 机器学习-----决策树
多巴胺与内啡肽.
机器学习机器学习决策树人工智能
文章目录1、概念2.决策树的构建过程2.1特征选择2.2树的生成2.3树的剪枝3.决策树的优缺点4.决策树的应用4.1分类任务4.2回归任务4.3集成学习代码示例总结1、概念1.1决策树是什么决策树是通过对样本的训练,建立出分类规则,并对新样本进行预测,属于有监督学习。根节点:最上面的节点。叶子节点:能直接看到结果的节点。非叶子节点:位于中间的节点。1.2决策树的类型分类树:用于分类任务,叶节点代
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- YOLOv12模型详解及代码复现
清风AI
深度学习算法详解及代码复现计算机视觉YOLO人工智能机器学习神经网络python算法
算法背景在计算机视觉领域不断发展壮大的背景下,YOLOv12算法应运而生。这一突破性成果源自JosephRedmon和AliFarhadi等研究人员在华盛顿大学的开创性工作。他们的目标是解决实时物体检测这一关键问题,在速度和精度之间寻求最佳平衡。YOLOv12延续了前作YOLOv1的成功理念,将其定位为一种回归问题,而非传统的区域提议+分类方法。这种创新方法不仅简化了整个检测过程,还显著提高了处理
- LLM推理和优化(1):基本概念介绍
AndrewHZ
AI算法工程师面试指北算法LLM语言模型推理优化KVCacheDeepSeek注意力机制
一、LLM推理的核心过程:自回归生成LLM(如DeepSeek、ChatGPT、LLaMA系列等)的推理本质是自回归生成:从初始输入(如[CLS]或用户prompt)开始,逐token预测下一个词,直到生成结束符(如[EOS])。其核心分为两个阶段:1.Initialization阶段(初始化)目标:准备第一个token的生成条件。关键步骤:输入编码:将初始prompt转换为token序列(如[C
- 工程化与框架系列(32)--前端测试实践指南
一进制ᅟᅠ
前端工程化与框架前端
前端测试实践指南引言前端测试是保证应用质量的重要环节。本文将深入探讨前端测试的各个方面,包括单元测试、集成测试、端到端测试等,并提供实用的测试工具和最佳实践。测试概述前端测试主要包括以下类型:单元测试:测试独立组件和函数集成测试:测试多个组件的交互端到端测试:模拟用户行为的完整测试性能测试:测试应用性能指标快照测试:UI组件的视觉回归测试测试工具实现测试运行器//测试运行器类classTestRu
- 边缘计算(Edge Computing)
Dream Algorithm
边缘计算人工智能
边缘计算(EdgeComputing)是一种分布式计算范式,它将数据处理和存储功能从传统的集中式云端转移到靠近数据源的网络边缘设备(如路由器、网关、本地服务器或终端设备)。边缘计算的目标是减少数据传输延迟、降低带宽压力,并提高系统的实时性和可靠性。边缘计算的核心概念靠近数据源边缘计算将计算资源部署在靠近数据生成的地方,而不是将所有数据发送到远程云端处理。分布式架构边缘计算采用分布式架构,将计算任务
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |
小酒馆燃着灯
机器学习算法k近邻算法
文章目录一KNN算法原理二KNN三要素三机器学习中标准化四KNN分类预测规则五KNN回归预测规则六KNN算法实现方式七KDTree7.1构造KDtree7.2KDtree查找最近邻八KNN特点九KNN算法实现案例一案例二1.机器学习2.深度学习与目标检测3.YOLOv54.YOLOv5改进5.YOLOv8及其改进6.Python与PyTorch7.工具8.小知识点9.杂记一KNN算法原理K近邻分类
- 华为鸿蒙实现重大突破,超4000个应用程式加入
ggtdfgfdg
华为harmonyos
华为开发者学堂自从华为Mate60系列携自研麒麟9000S5G处理器强势回归后,美西方就已经陷入了深深的自我怀疑,拜登对华为的重拳打压,难道都是“摆设”吗?芯片没有被阻拦,就连操作系统也迎来了重大突破,美国最不愿意看到的事情还是发生了!近日,华为鸿蒙传来重磅消息,在华为开启“原生鸿蒙应用”计划之后,短短2个月的时间,鸿蒙系统的应用程序就已经超过了4000个,激增20倍之多。除了主流的应用程序之外,
- 深入浅出 K 近邻算法:原理、实践与应用
烂蜻蜓
机器学习近邻算法算法
引言在机器学习的众多算法中,K近邻算法(K-NearestNeighbors,简称KNN)以其简洁而强大的特性占据着重要地位。它既可以用于分类任务,也能在回归任务中发挥作用。无论是处理简单数据集,还是面对复杂的数据分布,KNN都展现出独特的魅力。本文将深入探讨KNN算法的原理、特点、优缺点、实现步骤以及在分类和回归任务中的具体应用。KNN算法的基本原理KNN算法属于监督学习范畴,其核心思想质朴而直
- 大模型开发教程:从零开始的入门指南!
程序员二飞
人工智能java数据库职场和发展深度学习
概述大模型开发教程引领人工智能领域前沿,从基础概念至实战项目,全面覆盖Python与深度学习框架使用,指导初学者构建线性回归、逻辑回归、神经网络等模型,深入探索图像分类、情感分析等复杂应用,为探索未来智能世界提供坚实基石。前排提示,文末有大模型AGI-CSDN独家资料包哦!二、基础知识2.1人工智能与深度学习的概念人工智能(AI)是计算机科学的一个分支,旨在使计算机能够执行通常需要人类智能的任务。
- Python实现机器学习项目教程:房价预测
向着开发进攻
pythonpython机器学习开发语言
Python实现机器学习小项目教程:房价预测案例机器学习(MachineLearning)是数据科学中的一项重要技术,它通过从数据中学习规律,进行预测和决策。对于初学者来说,通过实际的项目来学习机器学习的原理和实现方法,是非常有效的。本篇教程将通过Python实现一个简单的机器学习小项目——房价预测。我们将使用scikit-learn库来构建并训练一个线性回归模型,预测房价。项目背景假设我们拥有一
- 《计量地理学》实习指南
zmg18213828575
一、EXCEL中常用的函数(部分)操作方法:打开EXCEL→输入原始数据→选择fx粘贴函数→函数分类中选择统计→从函数名中选择我们所需要的函数→确定→在数值中输入或选入计算数据范围(如A1:A10)则结果就会出来。具体的函数及其含义:AVERAGE计算参数平均值CORREL求相关系数DEVSQ求离差平方和FTESTF检验的结果GEOMEAN正数数组的几何平均数INTERCEPT一元回归线的载距(Y
- 单元测试方法及其运用
一休哥助手
软考系统架构师单元测试
引言随着软件规模和复杂度的不断提升,开发人员面临着如何保证软件质量与稳定性的挑战。单元测试作为软件测试中不可或缺的一环,能够在早期发现代码中的问题,从而提高软件的可靠性。本文将结合我参与的一个软件项目,详细介绍单元测试中的静态测试与动态测试方法,以及如何确定白盒测试的覆盖标准和组织实施回归测试。1.项目背景及个人角色在我参与的一个在线教育平台开发项目中,团队的目标是构建一个高度可扩展的课程管理和学
- 我的AI工具箱Tauri版-建筑平面图生成装修设计
Mr数据杨
Tauri工具箱ComfyUI
本模块利用先进的AI绘画大模型,将房屋平面设计图转化为高质量的室内装修效果图,让装修设计更加直观、高效。用户只需提供房屋的平面布局,并选择合适的AI绘画模型,系统即可智能生成涵盖客厅、卧室、厨房、卫生间等最多12个房间的高品质设计样图,完整呈现房屋的整体装修效果。本工具支持多种设计风格,如现代简约、北欧风、中式传统、美式复古、日式禅意等,满足不同用户的个性化装修需求。借助AI算法的自动化生成能力,
- 【Linux】-Pve下的Nginx安装
前鼻音太阳熊
Linuxlinuxnginx运维
linuxpve系统安装nginxpve系统和普通系统的区别核心定位与功能差异PVE:是专为虚拟化场景设计的Linux发行版,内置KVM虚拟机和LXC容器管理功能,提供统一的Web界面及集群管理能力,支持高可用性、虚拟机迁移等企业级特性23。普通Linux:作为通用操作系统,需通过手动安装KVM、Docker等工具实现虚拟化/容器化功能,缺乏原生的集中式虚拟化平台管理界面67。系
- Math.NET Numerics 库怎么装
9677
.net
你提到的缺少的库是Math.NETNumerics。关于Math.NETNumericsMath.NETNumerics是一个用于.NET平台的开源数学库,提供了以下功能:线性代数(矩阵运算、求解线性方程组等)。数值计算(积分、微分、优化等)。统计和概率分布。回归分析(包括多元线性回归)。它是C#中进行科学计算和数据分析的常用工具。安装Math.NETNumerics你可以通过NuGet包管理器安
- 我来泼盆冷水:正面迎击AI的时代千万别被ChatGPT割了韭菜
程序员济癫
ChatGPT人工智能chatgpt程序人生后端经验分享
前言ChatGPT从出来的时候我就一直密切关注,为此还加了不少群,用了不少套壳的程序,公司还开了专门的培训会,技术团队还为此搭建了接入ChatGPT的服务,帮助全公司的产品、商务、测试、运维、研发一起对ChatGPT做直观了解以及认知。时隔数月,我才又重新写一篇文章,借此表达对ChatGPT的看法,帮助大家减少一些浮躁的心情。因为之前我有写过一篇关于副业防骗的文章:https://juejin.c
- 告别印象笔记的局限:探索更强大的Markdown编辑工具——Joplin与Obsidian
后端
在信息爆炸的时代,笔记软件成为了我们整理思绪、记录灵感的得力助手。然而,面对市面上琳琅满目的选择,你是否还在为找不到一款称心如意的Markdown编辑工具而烦恼?印象笔记虽自带Markdown编辑功能,却因字体不可修改、渲染效果差等问题让人望而却步;马克飞象虽能与印象笔记同步,但速度慢且收费不菲。今天,我们将为你推荐两款Markdown软件——Joplin和Obsidian,它们不仅解决了上述问题
- 代码托管平台对比分析:Gitee与GitLab
一、Gitee:本土化服务的深度实践者Gitee凭借对中国开发者需求的精准洞察,提供了多项针对性优化功能,尤其适合国内团队:高速稳定的访问体验服务器均部署于国内,代码拉取、推送及CI/CD流程的执行速度显著优于跨境平台,减少因网络延迟导致的协作中断。国内多节点加速技术保障了高并发场景下的稳定性,适合中大型团队集中式开发。合规与数据安全的双重保障严格遵守《数据安全法》《个人信息保护法》等国内法规,支
- 云原生边缘计算:分布式智能的最后一公里革命
桂月二二
云原生边缘计算分布式
引言:从集中式云到边缘计算的范式演进阿里云ENS覆盖3000边缘节点,腾讯云ECM支持5ms内就近接入,特斯拉每辆车部署轻量K8s管理AI模型。KubeEdge管理百万边缘设备,AWSWavelength实现5G边缘数据处理延迟0{data:=es.diskQueue.Pop()ifcloud.IsConnected{cloud.Upload(data)}else{es.diskQueue.Ret
- AI概率学预测足球大小球让球数据分析
sanx18
人工智能数据分析数据挖掘
在足球数据分析中,AI概率学预测主要涉及大小球和让球盘口的分析。以下是关键点:1.大小球分析大小球指机构设定的进球数预期,投注者预测实际进球数是否超过或低于该值。AI应用:历史数据:AI通过分析球队的历史进球、失球等数据,预测未来比赛进球数。机器学习:使用回归模型、神经网络等预测进球数,考虑球队实力、比赛风格、天气等因素。实时数据:结合实时比赛数据动态调整预测。2.让球分析让球是机构为平衡双方实力
- sparkML入门,通俗解释机器学习的框架和算法
Tometor
spark-ml机器学习算法回归数据挖掘人工智能scala
一、机器学习的整体框架(类比烹饪)假设你要做一道菜,机器学习的过程可以类比为:步骤-->烹饪类比-->机器学习对应1.确定目标|想做什么菜(红烧肉/沙拉)|明确任务(分类/回归/聚类)2.准备食材|买菜、洗菜、切菜|数据收集与预处理3.设计食谱|决定烹饪步骤和调料|选择算法和模型设计4.试做并尝味道|调整火候和调味|模型训练与调参5.最终成品|端上桌的菜|模型部署与应用二、机器学习的核心流程1.数
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那