CVPR 2018学习笔记(2018-07-02更新)

workshop

  1. Robust vision challenge 2018
    robust vision.JPG

会议视频

  • 语义分割11个submissions,

第一名 Peter Samuel Rota Bulo (Mapillary): In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

pytorch code

key observation of 当前分割方法

我们关注的是减少memory consume in 训练,因为这可以让我们用larger crops, larger batch size or deeper models.
image.png

image.png
image.png
image.png
结论

大数据集上预训练非常有用!!!

  • In-PlaceABN 中文笔记

第二名 Marin Oršić (Uni Zagreb): Ladder-DenseNet Architecture for Robust Semantic Segmentation

image.png
image.png
image.png
image.png

Instance segment 3 submissions.

  • Shou-Yao Roy Tseng (NTHU): Non-local RoI for Instance Segmentation

  • Hsien-Tzu Cheng (NTHU): Improved MaskRCNN

  • Invited talk

    • Stefan Roth (TU Darmstadt): Robust Scene Analysis: Energy-based models, deep learning, and something in between
    • Uwe Franke (Daimler AG): 30 Years Fighting for Robustness
    • Judy Hoffman (UC Berkeley): Making our Models Robust to Changing Visual Environments
  1. CV for microscopy image analysis
  • Cell Image Segmentation by Integrating Multiple CNNs

  • Comparison of deep transfer learning strategies for digital pathology

  • Understanding Pixel-to-Label Prediction Model

  • Invited Talk: Life and death decisions- classification, characterization and predictions of death in neuronal models of neurodegenerative disease (Jeremy Linsley (UCSF))

  • 文章列表

  1. Medical Computer Vision and Health Informatics Workshop (CVPR 2018)
  • Deep Learning for Biomedical Imaging: Can We Get Better, Higher or Faster? Tammy Riklin Raviv, PhD
  • Deep Lesion Database and Deep Lesion Graphs on Relationship Learning and Organization of Significant Radiology Image Findings Ke YAN's blog
  • Mine Deeper & Learn Wider: a Perspective on Distilling Radiological Reports for Chest X-ray Analysis Wang Xiaosong

ChestX-ray8 数据贡献者

  • Population imaging analytics: progress, challenges and opportunities
  1. Embedded Vision
    论文列表

感兴趣文章

  • MIT- Learning Network Architectures of Deep CNNs under Resource Constraints
  • Recurrent Segmentation for Variable Computational Budgets
  • Probabilistic model for 3D interactive segmentation
  1. Tutorial: Interpreting and Explaining Deep Models in Computer Vision

Youtube视频

  1. Interpretable Machine Learning for Computer Vision

MIT 周博磊等人组织

你可能感兴趣的:(CVPR 2018学习笔记(2018-07-02更新))