PyTorch 通过两种方式可以进行多GPU训练: DataParallel, DistributedDataParallel. 当使用DataParallel的时候, 梯度的计算结果和在单卡上跑是一样的, 对每个数据计算出来的梯度进行累加. 当使用DistributedDataParallel的时候, 每个卡单独计算梯度, 然后多卡的梯度再进行平均.
下面是实验验证:
import torch
import os
import torch.nn as nn
def main():
model = nn.Linear(2, 3).cuda()
model = torch.nn.DataParallel(model, device_ids=[0, 1])
input = torch.rand(2, 2)
labels = torch.tensor([[1, 0, 0], [0, 1, 0]]).cuda()
(model(input) * labels).sum().backward()
print('input', input)
print([p.grad for p in model.parameters()])
if __name__=="__main__":
main()
执行CUDA_VISIBLE_DEVICES=0,1 python t.py
可以看到输出, 代码中对两个样本分别求梯度, 梯度等于样本的值, DataParallel把两个样本的梯度累加起来在不同GPU中同步.
input tensor([[0.4362, 0.4574],
[0.2052, 0.2362]])
[tensor([[0.4363, 0.4573],
[0.2052, 0.2362],
[0.0000, 0.0000]], device='cuda:0'), tensor([1., 1., 0.], device='cuda:0')]
import torch
import os
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP
def example(rank, world_size):
# create default process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
# create local model
model = nn.Linear(2, 3).to(rank)
print('model param', 'rank', rank, [p for p in model.parameters()])
# construct DDP model
ddp_model = DDP(model, device_ids=[rank])
print('ddp model param', 'rank', rank, [p for p in ddp_model.parameters()])
# forward pass
input = torch.randn(1, 2).to(rank)
outputs = ddp_model(input)
labels = torch.randn(1, 3).to(rank) * 0
labels[0, rank] = 1
# backward pass
(outputs * labels).sum().backward()
print('rank', rank, 'grad', [p.grad for p in ddp_model.parameters()])
print('rank', rank, 'input', input, 'outputs', outputs)
print('rank', rank, 'labels', labels)
# update parameters
optimizer.step()
def main():
world_size = 2
mp.spawn(example,
args=(world_size,),
nprocs=world_size,
join=True)
if __name__=="__main__":
# Environment variables which need to be
# set when using c10d's default "env"
# initialization mode.
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29504"
main()
执行CUDA_VISIBLE_DEVICES=0,1 python t1.py
可以看到输出, 代码中对两个样本分别求梯度, 梯度等于样本的值, 最终的梯度是各个GPU的梯度的平均.
model param rank 0 [Parameter containing:
tensor([[-0.4819, 0.0253],
[ 0.0858, 0.2256],
[ 0.5614, 0.2702]], device='cuda:0', requires_grad=True), Parameter containing:
tensor([-0.0090, 0.4461, -0.3493], device='cuda:0', requires_grad=True)]
model param rank 1 [Parameter containing:
tensor([[-0.3737, 0.3062],
[ 0.6450, 0.2930],
[-0.2422, 0.2089]], device='cuda:1', requires_grad=True), Parameter containing:
tensor([-0.5868, 0.2106, -0.4461], device='cuda:1', requires_grad=True)]
ddp model param rank 1 [Parameter containing:
tensor([[-0.4819, 0.0253],
[ 0.0858, 0.2256],
[ 0.5614, 0.2702]], device='cuda:1', requires_grad=True), Parameter containing:
tensor([-0.0090, 0.4461, -0.3493], device='cuda:1', requires_grad=True)]
ddp model param rank 0 [Parameter containing:
tensor([[-0.4819, 0.0253],
[ 0.0858, 0.2256],
[ 0.5614, 0.2702]], device='cuda:0', requires_grad=True), Parameter containing:
tensor([-0.0090, 0.4461, -0.3493], device='cuda:0', requires_grad=True)]
rank 1 grad [tensor([[ 0.2605, 0.1631],
[-0.0934, -0.5308],
[ 0.0000, 0.0000]], device='cuda:1'), tensor([0.5000, 0.5000, 0.0000], device='cuda:1')]
rank 0 grad [tensor([[ 0.2605, 0.1631],
[-0.0934, -0.5308],
[ 0.0000, 0.0000]], device='cuda:0'), tensor([0.5000, 0.5000, 0.0000], device='cuda:0')]
rank 1 input tensor([[-0.1868, -1.0617]], device='cuda:1') outputs tensor([[ 0.0542, 0.1906, -0.7411]], device='cuda:1',
grad_fn=<AddmmBackward0>)
rank 0 input tensor([[0.5209, 0.3261]], device='cuda:0') outputs tensor([[-0.2518, 0.5644, 0.0314]], device='cuda:0',
grad_fn=<AddmmBackward0>)
rank 1 labels tensor([[-0., 1., -0.]], device='cuda:1')
rank 0 labels tensor([[1., 0., -0.]], device='cuda:0')