原理Redis-QuickList

QuickList

**问题1:**ZipList虽然节省内存,但申请内存必须是连续空间,如果内存占用较多,申请内存效率很低。怎么办?

  • 为了缓解这个问题,我们必须限制ZipList的长度和entry大小。

**问题2:**但是我们要存储大量数据,超出了ZipList最佳的上限该怎么办?

  • 我们可以创建多个ZipList来分片存储数据

**问题3:**数据拆分后比较分散,不方便管理和查找,这多个ZipList如何建立联系?

  • Redis在3.2版本引入了新的数据结构QuickList,它是一个双端链表,只不过链表中的每个节点都是一个ZipList。

原理Redis-QuickList_第1张图片

为了避免QuickList中的每个ZipList中entry过多,Redis提供了一个配置项:list-max-ziplist-size来限制

  • 如果值为正,则代表ZipList的允许的entry个数的最大值

  • 如果值为负,则代表ZipList的最大内存大小,分5种情况:

    • -1:每个ZipList的内存占用不能超过4kb
    • -2:每个ZipList的内存占用不能超过8kb
    • -3:每个ZipList的内存占用不能超过16kb
    • -4:每个ZipList的内存占用不能超过32kb
    • -5:每个ZipList的内存占用不能超过64kb

    其默认值为 -2:

在这里插入图片描述

除了控制ZipList的大小,QuickList还可以对节点的ZipList做压缩。

通过配置项list-compress-depth来控制。因为链表一般都是从首尾访问较多,所以首尾是不压缩的。这个参数是控制首尾不压缩的节点个数:

  • 0:特殊值,代表不压缩
  • 1:标示QuickList的首尾各有1个节点不压缩,中间节点压缩
  • 2:标示QuickList的首尾各有2个节点不压缩,中间节点压缩
  • 以此类推

默认值: 0

原理Redis-QuickList_第2张图片

以下是QuickList的和QuickListNode的结构源码:

typedef struct quicklist {
    // 头节点指针
    quicklistNode *head; 
    // 尾节点指针
    quicklistNode *tail; 
    // 所有ziplist的entry的数量
    unsigned long count;    
    // ziplists总数量
    unsigned long len;
    // ziplist的entry上限,默认值 -2 
    int fill : QL_FILL_BITS;
    // 首尾不压缩的节点数量
    unsigned int compress : QL_COMP_BITS;
    // 内存重分配时的书签数量及数组,一般用不到
    unsigned int bookmark_count: QL_BM_BITS;
    quicklistBookmark bookmarks[];
} quicklist;
typedef struct quicklistNode {
    // 前一个节点指针
    struct quicklistNode *prev;
    // 下一个节点指针
    struct quicklistNode *next;
    // 当前节点的ZipList指针
    unsigned char *zl;
    // 当前节点的ZipList的字节大小
    unsigned int sz;
    // 当前节点的ZipList的entry个数
    unsigned int count : 16;  
    // 编码方式:1,ZipList; 2,lzf压缩模式
    unsigned int encoding : 2;
    // 数据容器类型(预留):1,其它;2,ZipList
    unsigned int container : 2;
    // 是否被解压缩。1:则说明被解压了,将来要重新压缩
    unsigned int recompress : 1;
    unsigned int attempted_compress : 1; //测试用
    unsigned int extra : 10; /*预留字段*/
} quicklistNode;

原理Redis-QuickList_第3张图片

QuickList的特点:

  • 是一个节点为ZipList的双端链表
  • 节点采用ZipList,解决了传统链表的内存占用问题
  • 控制了ZipList大小,解决连续内存空间申请效率问题
  • 中间节点可以压缩,进一步节省了内存

你可能感兴趣的:(Redis,redis,数据库,缓存)