ZK(ZooKeeper)分布式锁实现

前言


在平时我们对锁的使用,在针对单个服务,我们可以用 Java 自带的一些锁来实现,资源的顺序访问,但是随着业务的发展,现在基本上公司的服务都是多个,单纯的 Lock或者Synchronize 只能解决单个JVM线程的问题,那么针对于单个服务的 Java 的锁是无法满足我们业务的需要的,为了解决多个服务跨服务访问共享资源,于是就有了分布锁,分布式锁产生的原因就是集群。

正文


实现分布式锁的方式有哪些呢?

分布式锁的实现方式主要以(ZooKeeper、Reids、Mysql)这三种为主
今天我们主要讲解的是使用 ZooKeeper来实现分布式锁,ZooKeeper的应用场景主要包含这几个方面:

1.服务注册与订阅(共用节点)
2.分布式通知(监听ZNode)
3.服务命令(ZNode特性)
4.数据订阅、发布(Watcher)
5.分布式锁(临时节点)
ZooKeeper实现分布式锁,主要是得益于ZooKeeper 保证了数据的强一致性,锁的服务可以分为两大类:

保持独占所有试图来获取当前锁的客户端,最终有且只有一个能够成功得到当前锁的钥匙,通常我们会把 ZooKeeper 上的节点(ZNode)看做一把锁,通过 create 临时节点的方式来实现,当多个客户端都去创建一把锁的时候,那么只有成功创建了那个客户端才能拥有这把锁
控制时序所有试图获取锁的客户端,都是被顺序执行,只是会有一个序号(zxid),我们会有一个节点,例如:/testLock,所有临时节点都在这个下面去创建,ZK的父节点(/testLock) 维持了一个序号,这个是ZK自带的属性,他保证了子节点创建的时序性,从而也形成了每个客户端的一个 全局时序

ZK锁机制

在实现ZooKeeper 分布式锁之前我们有必要了解一下,关于ZooKeeper分布式锁机制的实现流程和原理,不然各位宝贝,出去面试的时候怎么和面试官侃侃而谈~

临时顺序节点

基于ZooKeeper的临时顺序节点 ,ZooKeeper比较适合来实现分布式锁:

顺序发号器: ZooKeeper的每一个节点,都是自带顺序生成器:在每个节点下面创建临时节点,新的子节点后面,会添加一个次序编号,这个生成的编号,会在上一次的编号进行 +1 操作
有序递增: ZooKeeper节点有序递增,可以保证锁的公平性,我们只需要在一个持久父节点下,创建对应的临时顺序节点,每个线程在尝试占用锁之前,会调用watch,判断自己当前的序号是不是在当前父节点最小,如果是,那么获取锁
Znode监听: 每个线程在抢占所之前,会创建属于当前线程的ZNode节点,在释放锁的时候,会删除创建的ZNode,当我们创建的序号不是最小的时候,会等待watch通知,也就是上一个ZNode的状态通知,当前一个ZNode删除的时候,会触发回调机制,告诉下一个ZNode,你可以获取锁开始工作了
临时节点自动删除:ZooKeeper还有一个好处,当我们客户端断开连接之后,我们出创建的临时节点会进行自动删除操作,所以我们在使用分布式锁的时候,一般都是会去创建临时节点,这样可以避免因为网络异常等原因,造成的死锁。
羊群效应: ZooKeeper节点的顺序访问性,后面监听前面的方式,可以有效的避免 羊群效应,什么是羊群效应:当某一个节点挂掉了,所有的节点都要去监听,然后做出回应,这样会给服务器带来比较大压力,如果有了临时顺序节点,当一个节点挂掉了,只有它后面的那一个节点才做出反应。
我们现在看一下下面一张图:


在上图中,ZooKeeper里面有一把锁节点 testLock,这个锁就是ZooKeeper的一个节点,当两个客户端来获取这把锁的时候,会对ZooKeeper进行加锁的请求,也就是我们所说的 临时顺序节点

 

当我们在 /testLock目录下创建了一个顺序临时节点后,ZK会自动对这个临时节点维护 一个节点序号,并且这个节点是递增的,比如我们 clientA 创建了一个临时顺序节点,ZK内部会生成一个序号:/lock0000000001,那么 clientB 也生成了一个临时顺序节点,ZK会生成一个序号为 /lock0000000002,在这里数字都是依次递增的,从1开始递增,ZK内部会维护这个顺序。

下图所示:

 

这时候,ClientA会进行监听判断,在父节点下,我是不是最小的,如果是的话,那么俺就可以加锁了,因为我是最小的,其他的都比我大。我自己可以进行加锁,你已经是一个成熟的临时节点了,要学会自己加锁。咳,那么ZK是怎么进行判断的呢?宝贝,您往下看:


这个是cleintA已经加锁完成了,这个时候clientB也要过来加锁,那么他也要在/testLock,创建一个属于自己的临时节点,那么这个时候他的序号就会变成/lock0000000002,如下图所示:

这个时候就会出现我们前面所讲的,clientB 在加锁的时候会判断,自己是不是最小的,一看在当前父节点下不是最小的,啊~我还挺大的,还有比我小的!!!

加锁失败呀,咳咳,这个时候呢,clientB 就会去偷窥clientA,气氛逐渐暧昧起来,啊不是,是按照顺序去监听前一个节点(clientA),是否完成工作了,如果完成了,clientB才可以进行加锁工作,宝贝,你往下看图片:

clientA 加锁成功后,会进行自己的业务处理,当 clientA 处理完工作后,说我完事了,下一个,那么 clientA 是怎么完事的呢,他多长时间?不是,具体流程是怎样的?小农你不对劲,说什么呢!!!真羞涩

上面我们不是说了,当 clientB 加锁失败后,会给前一个节点(clientA)加上一个监听,当clientA被删除以后,就表示有人释放了锁,这个时候就会通知 clientB重新去获取锁。

这个时候clientB重新获取锁的时候,发现自己就是当前父节点下面最小的那个,于是clientB就开始加锁,开始工作等一系列操作,当clientB 完事以后,释放锁,也说了一句,下一个。

如下图所示:

当然除了 clientA、clientB还有C\D\E等,这字母看着好奇怪又好熟悉,原理都是一样的,都是最小节点进行解锁,如果不是,监听前一个节点是否释放,如果释放了,再次尝试加锁。如果前一节节点释放了,自己就是最小了,就排到前面去了,有点类似于 银行取号 的操作。

代码实现

使用ZooKeeper 创建临时顺序节点来实现分布式锁,大体的流程就是 先创建一个持久父节点,在当前节点下,创建临时顺序节点,找出最小的序列号,获取分布式锁,程序业务完成之后释放锁,通知下一个节点进行操作,使用的是watch来监控节点的变化,然后依次下一个最小序列节点进行操作。

首先我们需要创建一个持久父类节点:

WatchCallBack

import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;
 
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
 
 
/**
 * @program: mxnzookeeper
 * @ClassName WatchCallBack
 * @description:
 * @author: 微信搜索:牧小农
 * @create: 2021-10-23 10:48
 * @Version 1.0
 **/
public class WatchCallBack  implements Watcher, AsyncCallback.StringCallback ,AsyncCallback.Children2Callback ,AsyncCallback.StatCallback {
 
    ZooKeeper zk ;
    String threadName;
    CountDownLatch cc = new CountDownLatch(1);
    String pathName;
 
    public String getPathName() {
        return pathName;
    }
 
    public void setPathName(String pathName) {
        this.pathName = pathName;
    }
 
    public String getThreadName() {
        return threadName;
    }
 
    public void setThreadName(String threadName) {
        this.threadName = threadName;
    }
 
    public ZooKeeper getZk() {
        return zk;
    }
 
    public void setZk(ZooKeeper zk) {
        this.zk = zk;
    }
 
    /** @Author 牧小农
     * @Description //TODO 尝试加锁方法
     * @Date 16:14 2021/10/24
     * @Param 
     * @return 
     **/
    public void tryLock(){
        try {
 
            System.out.println(threadName + " 开始创建。。。。");
            //创建一个顺序临时节点
            zk.create("/lock",threadName.getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL,this,"abc");
            //阻塞当前,监听前一个节点是否释放锁
            cc.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
 
    /** @Author 牧小农
     * @Description //TODO 解锁方法
     * @Date 16:14 2021/10/24
     * @Param 
     * @return 
     **/
    public void unLock(){
        try {
            //释放锁,删除临时节点
            zk.delete(pathName,-1);
            //结束工作
            System.out.println(threadName + "         结束工作了....");
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }
 
 
    @Override
    public void process(WatchedEvent event) {
 
        //如果第一个节点释放了锁,那么第二个就会收到回调
        //告诉它前一个节点释放了,你可以开始尝试获取锁
        switch (event.getType()) {
            case None:
                break;
            case NodeCreated:
                break;
            case NodeDeleted:
                //当前节点重新获取锁
                zk.getChildren("/",false,this ,"sdf");
                break;
            case NodeDataChanged:
                break;
            case NodeChildrenChanged:
                break;
        }
 
    }
 
    @Override
    public void processResult(int rc, String path, Object ctx, String name) {
        if(name != null ){
            System.out.println(threadName  +" 线程创建了一个节点为 : " +  name );
            pathName =  name ;
            //监听前一个节点
            zk.getChildren("/",false,this ,"sdf");
        }
 
    }
 
    //getChildren  call back
    @Override
    public void processResult(int rc, String path, Object ctx, List children, Stat stat) {
 
        //节点按照编号,升序排列
        Collections.sort(children);
        //对节点进行截取例如  /lock0000000022 截取后就是  lock0000000022
        int i = children.indexOf(pathName.substring(1));
 
 
        //是不是第一个,也就是说是不是最小的
        if(i == 0){
            //是第一个
            System.out.println(threadName +" 现在我是最小的....");
            try {
                zk.setData("/",threadName.getBytes(),-1);
                cc.countDown();
 
            } catch (KeeperException e) {
                e.printStackTrace();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }else{
            //不是第一个
            //监听前一个节点 看它是不是完成了工作进行释放锁了
            zk.exists("/"+children.get(i-1),this,this,"sdf");
        }
 
    }
 
    @Override
    public void processResult(int rc, String path, Object ctx, Stat stat) {
        //判断是否失败exists
    }
}
 

TestLock

import com.mxn.zookeeper.config.ZKUtils;
import org.apache.zookeeper.ZooKeeper;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
 
 
/**
 * @program: mxnzookeeper
 * @ClassName TestLock
 * @description:
 * @author: 微信搜索:牧小农
 * @create: 2021-10-23 10:45
 * @Version 1.0
 **/
public class TestLock {
 
 
    ZooKeeper zk ;
 
    @Before
    public void conn (){
        zk  = ZKUtils.getZK();
    }
 
    @After
    public void close (){
        try {
            zk.close();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
 
    @Test
    public void lock(){
 
        //创建十个线程
        for (int i = 0; i < 10; i++) {
            new Thread(){
                @Override
                public void run() {
                    WatchCallBack watchCallBack = new WatchCallBack();
                    watchCallBack.setZk(zk);
                    String threadName = Thread.currentThread().getName();
                    watchCallBack.setThreadName(threadName);
                    //线程进行抢锁操作
                    watchCallBack.tryLock();
                    try {
                        //进行业务逻辑处理
                        System.out.println(threadName+"         开始处理业务逻辑了...");
                        Thread.sleep(200);
                    }catch (Exception e){
                        e.printStackTrace();
                    }
                    //释放锁
                    watchCallBack.unLock();
 
 
                }
            }.start();
        }
 
 
        while(true){
 
        }
 
    }
 
}

运行结果:


Thread-1 线程创建了一个节点为 : /lock0000000112
Thread-5 线程创建了一个节点为 : /lock0000000113
Thread-2 线程创建了一个节点为 : /lock0000000114
Thread-6 线程创建了一个节点为 : /lock0000000115
Thread-9 线程创建了一个节点为 : /lock0000000116
Thread-4 线程创建了一个节点为 : /lock0000000117
Thread-7 线程创建了一个节点为 : /lock0000000118
Thread-3 线程创建了一个节点为 : /lock0000000119
Thread-8 线程创建了一个节点为 : /lock0000000120
Thread-0 线程创建了一个节点为 : /lock0000000121
Thread-1 现在我是最小的....
Thread-1         开始处理业务逻辑了...
Thread-1         结束工作了....
Thread-5 现在我是最小的....
Thread-5         开始处理业务逻辑了...
Thread-5         结束工作了....
Thread-2 现在我是最小的....
Thread-2         开始处理业务逻辑了...
Thread-2         结束工作了....
Thread-6 现在我是最小的....
Thread-6         开始处理业务逻辑了...
Thread-6         结束工作了....
Thread-9 现在我是最小的....
Thread-9         开始处理业务逻辑了...
Thread-9         结束工作了....
Thread-4 现在我是最小的....
Thread-4         开始处理业务逻辑了...
Thread-4         结束工作了....
Thread-7 现在我是最小的....
Thread-7         开始处理业务逻辑了...
Thread-7         结束工作了....
Thread-3 现在我是最小的....
Thread-3         开始处理业务逻辑了...
Thread-3         结束工作了....
Thread-8 现在我是最小的....
Thread-8         开始处理业务逻辑了...
Thread-8         结束工作了....
Thread-0 现在我是最小的....
Thread-0         开始处理业务逻辑了...
Thread-0         结束工作了....

总结

ZK分布式锁,能够有效的解决分布式、不可重入的问题,在上面的案例中我, 没有实现可重入锁,但是实现起来也不麻烦,只需要带上线程信息等唯一标识,判断一下就可以了

ZK实现分布式锁具有天然的优势,临时顺序节点,可以有效的避免死锁问题,让客户端断开,那么就会删除当前临时节点,让下一个节点进行工作。

你可能感兴趣的:(工具学习,J2EE学习,分布式,java-zookeeper,zookeeper)