PTA(赫夫曼编码)

给定一段文字,如果我们统计出字母出现的频率,是可以根据哈夫曼算法给出一套编码,使得用此编码压缩原文可以得到最短的编码总长。然而哈夫曼编码并不是唯一的。例如对字符串"aaaxuaxz",容易得到字母 'a'、'x'、'u'、'z' 的出现频率对应为 4、2、1、1。我们可以设计编码 {'a'=0, 'x'=10, 'u'=110, 'z'=111},也可以用另一套 {'a'=1, 'x'=01, 'u'=001, 'z'=000},还可以用 {'a'=0, 'x'=11, 'u'=100, 'z'=101},三套编码都可以把原文压缩到 14 个字节。但是 {'a'=0, 'x'=01, 'u'=011, 'z'=001} 就不是哈夫曼编码,因为用这套编码压缩得到 00001011001001 后,解码的结果不唯一,"aaaxuaxz" 和 "aazuaxax" 都可以对应解码的结果。本题就请你判断任一套编码是否哈夫曼编码。

输入格式:

首先第一行给出一个正整数 N(2≤N≤63),随后第二行给出 N 个不重复的字符及其出现频率,格式如下:

c[1] f[1] c[2] f[2] ... c[N] f[N]

其中c[i]是集合{'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}中的字符;f[i]c[i]的出现频率,为不超过 1000 的整数。再下一行给出一个正整数 M(≤1000),随后是 M 套待检的编码。每套编码占 N 行,格式为:

c[i] code[i]

输出格式:

对每套待检编码,如果是正确的哈夫曼编码,就在一行中输出"Yes",否则输出"No"。

注意:最优编码并不一定通过哈夫曼算法得到。任何能压缩到最优长度的前缀编码都应被判为正确。

输入样例:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

输出样例:

Yes
Yes
No
No

代码实现:

#include
#include
#include
#define Inf 0x3f3f3f3f
typedef struct
{
    unsigned int weight;
    unsigned int parent,lchild,rchild;
}HTnode,*Huffman;
Huffman createTree(int N,int* w);
void Select(Huffman HT,int i,int* s1,int* s2);
int GetWPL(Huffman,int);

int judge(int N,int WPL,int* w)
{
    char sign[N+1][N];
    int len[N+1];
    char A;
    int sum=0;
    for(int i=1;i<=N;i++)
    {
        getchar();//读取换行
        scanf("%c %s",&A,&sign[i]);
        len[i]=strlen(sign[i]);
        sum+=w[i]*len[i];
        //printf("%s\n",sign[i]);
    }
    //printf("%d\n",sum);
    //比较WPL
    if(sum>WPL)return 0;
    for(int i=1;i<=N;i++)
    {
        for(int j=i+1;j<=N;j++)
        {
            int x=0,y=0;
            while(x

你可能感兴趣的:(算法,c语言,数据结构)