【视觉SLAM十四讲学习笔记】第三讲——Eigen库

专栏系列文章如下:
【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍
【视觉SLAM十四讲学习笔记】第二讲——初识SLAM
【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵

本章将介绍视觉SLAM的基本问题之一:如何描述刚体在三维空间中的运动

Eigen

Eigen是一个C++开源线性代数库。它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。

请输入以下命令进行安装:

sudo apt-get install libeigen3-dev

与其他库相比,Eigen的特殊之处在于,它是一个纯用头文件搭建起来的库,这意味着你只能找到它的头文件,而没有类似.so或者.a的二进制文件。在使用时,只需引入Eigen的头文件即可,不需要链接库文件(因为它没有库文件)。接下来对这个库的使用做一些示例:

#include 

using namespace std;

#include 
// Eigen 核心部分
#include 
// 稠密矩阵的代数运算(逆,特征值等)
#include 

using namespace Eigen;

int main(int argc, char **argv) {
  // Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列
  // 声明一个2*3的float矩阵
  Matrix<float, 2, 3> matrix_23;

  // 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix
  // 例如 Vector3d 实质上是 Eigen::Matrix,即三维向量
  Vector3d v_3d;
  // 这是一样的
  Matrix<float, 3, 1> vd_3d;

  // Matrix3d 实质上是 Eigen::Matrix
  Matrix3d matrix_33 = Matrix3d::Zero(); //初始化为零
  // 如果不确定矩阵大小,可以使用动态大小的矩阵
  Matrix<double, Dynamic, Dynamic> matrix_dynamic;
  // 更简单的
  MatrixXd matrix_x;
  // 这种类型还有很多,我们不一一列举

  // 下面是对Eigen阵的操作
  // 输入数据(初始化)
  matrix_23 << 1, 2, 3, 4, 5, 6;
  // 输出
  cout << "matrix 2x3 from 1 to 6: \n" << matrix_23 << endl;

  // 用()访问矩阵中的元素
  cout << "print matrix 2x3: " << endl;
  for (int i = 0; i < 2; i++) 
  {
    for (int j = 0; j < 3; j++) cout << matrix_23(i, j) << "\t";
    cout << endl;
  }

  return 0;
}

输出结果:

matrix 2x3 from 1 to 6: 
1 2 3
4 5 6
print matrix 2x3: 
1	2	3	
4	5	6	

矩阵运算:

#include 

using namespace std;

#include 
#include 
#include 

using namespace Eigen;

int main(int argc, char **argv) {
  // Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列
  // 声明一个2*3的float矩阵
  Matrix<float, 2, 3> matrix_23;

  Vector3d v_3d;
  Matrix<float, 3, 1> vd_3d;

  // Matrix3d 实质上是 Eigen::Matrix
  Matrix3d matrix_33 = Matrix3d::Zero(); //初始化为零

  // 下面是对Eigen阵的操作
  // 输入数据(初始化)
  matrix_23 << 1, 2, 3, 4, 5, 6;

  // 矩阵和向量相乘(实际上仍是矩阵和矩阵)
  v_3d << 3, 2, 1;
  vd_3d << 4, 5, 6;

  // 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的
  // Matrix result_wrong_type = matrix_23 * v_3d;
  // 应该显式转换
  Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
  cout << "[1,2,3;4,5,6]*[3,2,1]=" << result.transpose() << endl;

  Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;
  cout << "[1,2,3;4,5,6]*[4,5,6]: " << result2.transpose() << endl;

  // 一些矩阵运算
  // 四则运算就不演示了,直接用+-*/即可。
  matrix_33 = Matrix3d::Random();      // 随机数矩阵
  cout << "random matrix: \n" << matrix_33 << endl;
  cout << "transpose: \n" << matrix_33.transpose() << endl;      // 转置
  cout << "sum: " << matrix_33.sum() << endl;            // 各元素和
  cout << "trace: " << matrix_33.trace() << endl;          // 迹
  cout << "times 10: \n" << 10 * matrix_33 << endl;               // 数乘
  cout << "inverse: \n" << matrix_33.inverse() << endl;        // 逆
  cout << "det: " << matrix_33.determinant() << endl;    // 行列式

  // 特征值
  // 实对称矩阵可以保证对角化成功
  SelfAdjointEigenSolver<Matrix3d> eigen_solver(matrix_33.transpose() * matrix_33);
  cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl;
  cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl;

  return 0;
}	

输出结果:

[1,2,3;4,5,6]*[3,2,1]=10 28
[1,2,3;4,5,6]*[4,5,6]: 32 77
random matrix: 
 0.680375   0.59688 -0.329554
-0.211234  0.823295  0.536459
 0.566198 -0.604897 -0.444451
transpose: 
 0.680375 -0.211234  0.566198
  0.59688  0.823295 -0.604897
-0.329554  0.536459 -0.444451
sum: 1.61307
trace: 1.05922
times 10: 
 6.80375   5.9688 -3.29554
-2.11234  8.23295  5.36459
 5.66198 -6.04897 -4.44451
inverse: 
-0.198521   2.22739    2.8357
  1.00605 -0.555135  -1.41603
 -1.62213   3.59308   3.28973
det: 0.208598
Eigen values = 
0.0242899
 0.992154
  1.80558
Eigen vectors = 
-0.549013 -0.735943  0.396198
 0.253452 -0.598296 -0.760134
-0.796459  0.316906 -0.514998

解方程:

#include 
#include 
#include 
#include 
using namespace std;
using namespace Eigen;

#define MATRIX_SIZE 50

int main(int argc, char **argv) {
  // 解方程
  // 我们求解 matrix_NN * x = v_Nd 这个方程
  // N的大小在前边的宏里定义,它由随机数生成
  // 直接求逆自然是最直接的,但是求逆运算量大

  Matrix<double, MATRIX_SIZE, MATRIX_SIZE> matrix_NN
      = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);
  matrix_NN = matrix_NN * matrix_NN.transpose();  // 保证半正定
  Matrix<double, MATRIX_SIZE, 1> v_Nd = MatrixXd::Random(MATRIX_SIZE, 1);

  clock_t time_stt = clock(); // 计时
  // 直接求逆
  Matrix<double, MATRIX_SIZE, 1> x = matrix_NN.inverse() * v_Nd;
  cout << "time of normal inverse is "
       << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl;
  cout << "x = " << x.transpose() << endl;

  // 通常用矩阵分解来求,例如QR分解,速度会快很多
  time_stt = clock();
  x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
  cout << "time of Qr decomposition is "
       << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl;
  cout << "x = " << x.transpose() << endl;

  // 对于正定矩阵,还可以用cholesky分解来解方程
  time_stt = clock();
  x = matrix_NN.ldlt().solve(v_Nd);
  cout << "time of ldlt decomposition is "
       << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl;
  cout << "x = " << x.transpose() << endl;

  return 0;
}

结果如下:

time of normal inverse is 2.606ms
x = -55.7896 -298.793  130.113 -388.455 -159.312  160.654 -40.0416 -193.561  155.844  181.144  185.125 -62.7786  19.8333 -30.8772 -200.746  55.8385 -206.604  26.3559 -14.6789  122.719 -221.449   26.233  -318.95 -78.6931  50.1446  87.1986 -194.922  132.319  -171.78 -4.19736   11.876 -171.779  48.3047  84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237  28.9419  111.421  92.1237 -288.248 -23.3478  -275.22 -292.062  -92.698  5.96847 -93.6244  109.734
time of Qr decomposition is 3.419ms
x = -55.7896 -298.793  130.113 -388.455 -159.312  160.654 -40.0416 -193.561  155.844  181.144  185.125 -62.7786  19.8333 -30.8772 -200.746  55.8385 -206.604  26.3559 -14.6789  122.719 -221.449   26.233  -318.95 -78.6931  50.1446  87.1986 -194.922  132.319  -171.78 -4.19736   11.876 -171.779  48.3047  84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237  28.9419  111.421  92.1237 -288.248 -23.3478  -275.22 -292.062  -92.698  5.96847 -93.6244  109.734
time of ldlt decomposition is 1.38ms
x = -55.7896 -298.793  130.113 -388.455 -159.312  160.654 -40.0416 -193.561  155.844  181.144  185.125 -62.7786  19.8333 -30.8772 -200.746  55.8385 -206.604  26.3559 -14.6789  122.719 -221.449   26.233  -318.95 -78.6931  50.1446  87.1986 -194.922  132.319  -171.78 -4.19736   11.876 -171.779  48.3047  84.1812 -104.958 -47.2103 -57.4502 -48.9477 -19.4237  28.9419  111.421  92.1237 -288.248 -23.3478  -275.22 -292.062  -92.698  5.96847 -93.6244  109.734

这个例程演示了Eigen矩阵的基本操作与运算。要编译它,需要在CMakeLists.txt里指定Eigen的头文件目录:

#添加头文件
include_directories("/usr/include/eigen3")

因为Eigen库只有头文件,所以不需要再用target_link_libraries语句将程序链接到库上。

你可能感兴趣的:(视觉SLAM十四讲学习笔记,笔记,SLAM,机器人,矩阵,线性代数)