- Click Event Simulation:无需浏览器触发动态数据加载
亿牛云爬虫专家
python代理IP爬虫代理浏览器动态数据ClickEvent模拟点击python爬虫代理代理IP
一、明确目标与前置知识目标使用Python模拟点击事件,直接发送HTTP请求采集拼多多上商品价格和优惠信息。采用爬虫代理(代理IP)的技术,设置好Cookie和User-Agent,以防止被目标网站屏蔽。利用多线程技术加速数据采集,提高效率。前置知识基本的Python编程知识HTTP协议与请求头、Cookie的概念多线程编程基础(如线程、队列的使用)代理IP的使用原理二、按步骤拆解操作1.环境准备
- HSPF(Hydrological Simulation Program Fortran)模型
weixin_贾
水文水资源HSPF模型泥沙输运与侵蚀水质与泥沙水动力模型
HSPF模型与SWAT模型一样都是著名的水文模型软件,在世界各地的水文模拟中得到广泛的应用。由于种种原因,HSPF模型在国内的影响力不如SWAT;但是,HSPF模型也有其自身的优势,比如:1.它有很高集成度的前后处理软件,减轻建模的负担;2.它可以自主调节水文响应单元的大小,模型有更好的灵活性;3.它可以输出最小为小时的结果,比SWAT更方便;4.它可以与EFDC等水动力模型相耦合等。【内容简介】
- Unity3D 布料模拟(Cloth Simulation)详解
Thomas_YXQ
数码相机Unity3D职场和发展游戏开发Unity
1.引言布料模拟是计算机图形学中的一个重要领域,广泛应用于游戏开发、电影特效、虚拟现实等领域。Unity3D提供了内置的布料模拟系统,开发者可以轻松地在游戏中实现逼真的布料效果。本文将详细介绍Unity3D中的布料模拟技术,并通过代码示例展示如何实现一个简单的布料模拟。对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀!2.Unity3D布料模拟概述Unity3D的布料模
- LBM两相流模拟simulation,采用着色模型
xx155802862xx
matlab
LBM两相流模拟simulation,采用着色模型。资源文件列表LBM_D2Q9_RK_MRT+EE_MODEL/distinguishable_colors/distinguishable_colors.m,4950LBM_D2Q9_RK_MRT+EE_MODEL/main.m,2776LBM_D2Q9_RK_MRT+EE_MODEL/plotColorField.m,3777LBM_D2Q9_
- 【文献】Model-based Systems Engineering methodology for defining multi-physics simulation models
不停爬行的蜗牛终会到达山顶
uml设计规范
日益激烈的市场竞争和复杂系统精准仿真的要求使仿真成为至关重要的工具。当前的仿真一次只涉及一个物理领域和稳定静态的场景,由于考虑不到其他物理领域的影响,可能导致最终产品得到不完全的仿真结果和意外失败。数字孪生可以集成不同物理领域的建模和耦合,还能重现真实系统的瞬时行为,是重要的产品开发工具。系统工程的专有方法有益于数字孪生构建。系统工程的目的是管理和控制复杂系统的设计,从技术角度确保全局一致性,已在
- SCOT 500M Operations Analytics: Simulation
后端
FinalExamOperationsAnalytics:SimulationSCOT500M,Spring2025IndividualFinalExam:DueFriday,February28,11p.m.OnCanvasAfewguidelinesfortheexam:•Thisassignmentistobedoneentirelyindividually.•Youmaydiscussit
- (一)建模
YangZ123123
UMLUML
1、建模的基本概念1.1、建模(Modeling)把不太容易理解的东西,和一些已经较为理解,且十分类似的东西进行比较,从而对不太容易理解的东西能够达到深刻的理解。1.2、模型模型是对事物的一种抽象化、简化。1.3、模型的一些示例给客户显示的架构模型用于风洞测试的飞机比例模型油画作品构图的素描机器部件蓝图情景演示板图书梗概一个数学公式e.g.f(x)=y+2‘论抗日战争是持久战’2、为什么要建模因为
- 氧传感器芯片cj125驱动
yyytucj
linux运维服务器
氧传感器芯片cj125驱动,适用于12单片机文件列表cj125/bin/Full_Chip_Simulation.map , 105cj125/bin/HCS12_Serial_Monitor.abs , 359880cj125/bin/HCS12_Serial_Monitor.abs.glo , 2178cj125/bin/HCS12_Serial_Monitor.abs.s19 , 2172c
- SCOT 500M Operations Analytics: Simulation
后端
OperationsAnalytics:SimulationDecisionTwoGuidelinesSCOT500M,Spring2025Asyoureadthecase,considerhowyouwouldutilizeDiscreteEventSimulationtomodelservicesprovidedbythecompany’stechteams.Thereareseveralch
- 51-59 CVPR 2024 | ChatSiM:Editable Scene Simulation for Autonomous Driving via Collaborative LLM
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶AIGCstablediffusion智慧城市计算机视觉
24年3月,上海交通大学、上海人工智能实验室、卡内基梅隆大学和清华大学联合发布EditableSceneSimulationforAutonomousDrivingviaCollaborativeLLM-Agents,基于LLM协作的可编辑自动驾驶场景仿真。ChatSim利用了大型语言模型(LLM)智能体协作框架,采用了一种新颖的多摄像头神经辐射场McNeRF和多摄像头照明估计McLight方法实
- 实验踩坑 flash_attn_2_cuda undifiend symol
崩溃李
linux
报错RuntimeError:Failedtoimporttransformers.models.llama.modeling_llamabecauseofthefollowingerror(lookuptoseeitstraceback):…/lib/python3.10/site-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.s
- The Simulation技术浅析(二):模型技术
爱研究的小牛
AIGC—虚拟现实算法人工智能AIGC机器学习深度学习
一、物理模型(PhysicalModels)1.概述物理模型基于物理定律和原理,通过模拟现实世界中物理系统的行为和相互作用来构建模型。物理模型通常用于工程、物理和化学等领域,用于预测系统在不同条件下的表现。2.关键技术力学定律:例如牛顿运动定律,用于模拟物体的运动和受力情况。流体力学:例如纳维-斯托克斯方程,用于模拟流体流动。热力学定律:例如热传导方程,用于模拟热量传递。3.过程模型公式及案例详解
- 小曾WRF自学日记(4)渐入佳境 ——WRF实例-运行WRF
ZzYH22
单例模式
WRF的运行进入WRF/run文件夹,修改namelist.input首先在WPS文件夹下,使用命令ncdump-hmet_em.d01.2018-05-04_12:00:00.nc查看最后的globalattributes部分。//globalattributes::TITLE="OUTPUTFROMMETGRIDV4.0";:SIMULATION_START_DATE="2018-05-04_
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- MATLAB代码实现的是对电机控制系统中自适应优化控制器与传统滑膜控制器性能的对比仿真
go5463158465
MATLAB专栏matlab
clear;%%初始参数设置motor_power=750;%电机额定功率(W)motor_speed_ref=3000;%电机额定转速(rpm)simulation_time=0.2;%仿真时间(s)sampling_time=0.001
- 蒙特卡洛模拟(Monte Carlo Simulation)详解
ballball~~
算法蒙特卡洛模拟算法机器学习
简介:个人学习分享,如有错误,欢迎批评指正。历史背景蒙特卡洛模拟的名称来源于摩纳哥的蒙特卡洛赌场,因其依赖于随机性和概率,与赌博中的随机过程有相似之处。该方法的雏形可以追溯到20世纪40年代,二战期间,美国数学家斯坦尼斯拉夫·乌拉姆(StanislawUlam)和约翰·冯·诺依曼(JohnvonNeumann)在研究核武器的概率计算时首次提出了利用随机采样解决复杂问题的思想。随着计算机技术的迅猛发
- matlab mle 优化,MLE+: Matlab Toolbox for Integrated Modeling, Control and Optimization for Buildings...
Simon Zhong
matlabmle优化
摘要:FollowingunilateralopticnervesectioninadultPVGhoodedrat,theaxonguidancecueephrin-A2isup-regulatedincaudalbutnotrostralsuperiorcolliculus(SC)andtheEphA5receptorisdown-regulatedinaxotomisedretinalgan
- Make It a Chorus: Knowledge- and Time-aware Item Modeling for Sequential Recommendation sigir 20
农场主
机器学习
介绍的博客作者讲解摘要传统的推荐系统主要针对固有的、长期的用户偏好进行建模,而动态的用户需求也是非常重要的。通常,历史消费会影响用户对其关系项的需求。例如,用户倾向于一起购买互补产品(iPhone和AirPods),而不是替代产品(Powerbeats和AirPods),尽管替代购买的产品仍然迎合了他/她的偏好。为了更好地模拟历史序列的影响,以前的研究引入了项目关系的语义来捕捉用户的推荐需求。然而
- 用VCS直接仿真vivado工程
啊节奏不对
vcs仿真fpga开发risc-v嵌入式硬件
用VCS直接仿真vivado工程前言编译vcs仿真库simulation设置RunSimulation写Makefile执行脚本,运行vcs仿真前言在日常搬砖过程中,在ICdesign进行fpga原型验证时,在上fpga测试之前,往往需要对vivado工程进行仿真,而vivado工程中可能存在较多的xilinxip或者blockdesign,直接使用vivado仿真,速度难以接收。如果使用vcs进
- LLM-项目详解(一):Chinese-LLaMA-Alpaca【transformers/models/llama/modeling_llama.py文件】
u013250861
#LLM/经典模型llama
site-packages/transformers/models/llama/modeling_llama.py#coding=utf-8#Copyright2022EleutherAIandtheHuggingFaceInc.team.Allrightsreserved.##ThiscodeisbasedonEleutherAI'sGPT-NeoXlibraryandtheGPT-NeoX#a
- 数据科学生命周期的7个步骤–在业务中应用AI
听忆.
人工智能
数据科学生命周期的7个步骤–在业务中应用AI1.问题定义(BusinessUnderstanding)2.数据收集(DataCollection)3.数据准备(DataPreparation)4.数据探索(ExploratoryDataAnalysis,EDA)5.模型构建(Modeling)6.模型评估(Evaluation)7.模型部署与维护(DeploymentandMaintenance)
- Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport论文阅读笔记
猪猪想上树
论文阅读笔记
ConditionalFlowMatching:Simulation-FreeDynamicOptimalTransport笔记发现问题连续正规化流(CNF)是一种有吸引力的生成式建模技术,但在基于模拟的最大似然训练中受到了限制。解决问题介绍一种新的条件流匹配(CFM),一种针对CNFs的免模拟训练目标。具有稳定的回归目标,用于扩散模型中的随机流,但享有确定性流模型的有效推断。与扩散模型和CNF目
- Database Modeling with Object Role Modeling
envykok
初级DBAobjectdatabaseconstraintstypesdropdownvisio
http://dotnet.sys-con.com/node/38984Itisnosecretthatpropermodelingwhendevelopingcomplex,multitieredapplicationsisvitaltothesuccessofaproject.Countlessstudiesinvestigatingthepoorsuccessrateofenterprise
- 大疆的raw图噪声合成:Towards General Low-Light Raw Noise Synthesis and Modeling
tony365
降噪pytorch计算机视觉人工智能
文章目录TowardsGeneralLow-LightRawNoiseSynthesisandModeling1dd2信号相关噪声建模3信号无关噪声:生成器和一致性损失(L1和vgg内容损失)4判别器5总结TowardsGeneralLow-LightRawNoiseSynthesisandModeling1dd作者说极暗场景下物理方法仿真不好。作者提出的方法,对于信号相关的噪声使用物理方法建模,
- PyCharm - Run & Debug 程序安全执行步骤
Yongqiang Cheng
PyCharmPyCharmRun程序安全执行步骤Debug程序安全执行步骤
PyCharm-Run&Debug程序安全执行步骤1.Run2.DebugReferences1.Runrightclick->Run‘simulation_data_gene…’orCtrl+Shift+F102.Debugrightclick->Debug‘simulation_data_gene…’在一个PyCharm工程下,存在多个Python脚本文件,为避免运行错误,建议按照上述Run&
- Multilevel Modeling Using R 第五章
小潤澤
这一章我们就要介绍横断数据的多层次模型了MultilevelLongitudinalFramework我们前面的章节介绍了什么是线性的多层次模型,这次我们介绍下横断数据的多层次分析横断数据的多层次模型的结构如上其中,Yit为响应变量,Xit为受时间影响的决策变量(其中i为第i个变量,t为时间);πit为Level1的回归系数,βit为Level2的回归系数;εit是Level1的误差,rit为Le
- 文献阅读:Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Espresso Macchiato
文献阅读MambaTransformerSSSMS6SSM
文献阅读:Mamba:Linear-TimeSequenceModelingwithSelectiveStateSpaces1.文章简介2.方法介绍1.StateSpaceModels2.SelectiveStateSpaceModels3.实验考察&结论1.简单问题上的验证2.实际场景效果1.语言模型2.DNA模型3.语音模型3.细节考察1.速度和内存考察2.消融实验4.结论&思考文献链接:ht
- Lynda中文字幕 Maya角色建模教程 Modeling a Character in Maya
zwsub
ModelingaCharacterinMaya中文字幕Maya角色建模教程中文字幕ModelingaCharacterinMaya在Maya中塑造人物角色时,请加入作者RyanKittleson,了解如何在Maya2011中从零开始创建专业逼真的3D角色该课程演示了软选择和多边形挤出等重要概念和工具如何应用于角色建模,并提供了一个简单的分步方法来建立人物解剖学,包括躯干,四肢,手,脸和头发还包括
- bpmn.js自定义各项,palette contextPad elementFactory modeling renderer rules
许珊珊
源码vuejavascriptbpmn.js源码前端
从bpmn仓库给出的example看https://github.com/bpmn-io/bpmn-js-examples我们要实现自定义可以有两种方式,【继承】bpmn-js,并修改原型上的方法,达到兼容自定义的相关【重新实现】也就是把bpmn做的事情,在本地再做一遍,当然你可以各种“借鉴”里面的function,并达到你的要求比如customModeler/index.jsimportCust
- Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling
UnknownBody
LLM语言模型人工智能机器学习
本文是LLM系列文章,针对《RephrasingtheWeb:ARecipeforComputeandData-EfficientLanguageModeling》的翻译。重新表述Web:计算和数据高效语言建模的诀窍摘要1引言2相关工作3WRAP:网络重述增强预训练4困惑度评估5零样本任务6分析和消融实验7局限性和机遇8结论摘要大型语言模型是在大量的网络碎片上训练的,这些碎片通常是非结构化的、嘈杂
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。