Flink Table API 读写MySQL

Flink Table API 读写 MySQL

import org.apache.flink.connector.jdbc.table.JdbcConnectorOptions;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableDescriptor;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.TableResult;

import static org.apache.flink.table.api.Expressions.$;

public class TableApiMysql {
    public static void main(String[] args) {
        EnvironmentSettings settings = EnvironmentSettings.newInstance().inBatchMode().build();
        TableEnvironment tableEnv = TableEnvironment.create(settings);

        Schema schema = Schema.newBuilder()
                .column("user_id", DataTypes.BIGINT())
                .column("user_name", DataTypes.STRING())
                .build();

        TableDescriptor tableDescriptor = TableDescriptor.forConnector("jdbc")
                .option(JdbcConnectorOptions.URL, "jdbc:mysql://localhost:3306/tmp")
                .option(JdbcConnectorOptions.USERNAME, "root")
                .option(JdbcConnectorOptions.PASSWORD, "123456")
                .option(JdbcConnectorOptions.TABLE_NAME, "test")
                .schema(schema)
                .build();

        tableEnv.createTable("source", tableDescriptor);

        // 通过API执行select
        System.out.println("select format 1: ");
        tableEnv.from("source").select($("user_id"), $("user_name")).execute().print();

        // 写入mysql user_id是自增主键
        tableEnv.executeSql("insert into source(user_name) select 'hello'");

        // 直接SQL执行select *
        System.out.println("select format 2: ");
        Table table = tableEnv.sqlQuery("select * from source");
        TableResult execute = table.execute();
        execute.print();
    }
}

你可能感兴趣的:(flink,mysql,大数据)