TensorFlow2.X结合OpenCV = 手势识别

先显示下部分数据集图片

构建模型进行训练

数据集地址(可参考如何用TensorFlow2.0制作自己的数据集

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import datasets,layers,optimizers,Sequential,metrics

from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2

import os

import pathlib

import random

import matplotlib.pyplot as plt

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

def read_data(path):

    path_root = pathlib.Path(path)

    # print(path_root)

    # for item in path_root.iterdir():

    #    print(item)

    image_paths = list(path_root.glob('*/*'))

    image_paths = [str(path) for path in image_paths]

    random.shuffle(image_paths)

    image_count = len(image_paths)

    # print(image_count)

    # print(image_paths[:10])

    label_names = sorted(item.name for item in path_root.glob('*/') if item.is_dir())

    # print(label_names)

    label_name_index = dict((name, index) for index, name in enumerate(label_names))

    # print(label_name_index)

    image_labels = [label_name_index[pathlib.Path(path).parent.name] for path in image_paths]

    # print("First 10 labels indices: ", image_labels[:10])

    return image_paths,image_labels,image_count

def preprocess_image(image):

    image = tf.image.decode_jpeg(image, channels=3)

    image = tf.image.resize(image, [100, 100])

    image /= 255.0  # normalize to [0,1] range

    # image = tf.reshape(image,[100*100*3])

    return image

def load_and_preprocess_image(path,label):

    image = tf.io.read_file(path)

    return preprocess_image(image),label

def creat_dataset(image_paths,image_labels,bitch_size):

    db = tf.data.Dataset.from_tensor_slices((image_paths, image_labels))

    dataset = db.map(load_and_preprocess_image).batch(bitch_size)   

    return dataset

def train_model(train_data,test_data):

    #构建模型

    network = keras.Sequential([

            keras.layers.Conv2D(32,kernel_size=[5,5],padding="same",activation=tf.nn.relu),

            keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),

            keras.layers.Conv2D(64,kernel_size=[3,3],padding="same",activation=tf.nn.relu),

            keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),

            keras.layers.Conv2D(64,kernel_size=[3,3],padding="same",activation=tf.nn.relu),

            keras.layers.Flatten(),

            keras.layers.Dense(512,activation='relu'),

            keras.layers.Dropout(0.5),

            keras.layers.Dense(128,activation='relu'),

            keras.layers.Dense(10)])

    network.build(input_shape=(None,100,100,3))

    network.summary()

    network.compile(optimizer=optimizers.SGD(lr=0.001),

            loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),

            metrics=['accuracy']

    )

    #模型训练

    network.fit(train_data, epochs = 100,validation_data=test_data,validation_freq=2) 

    network.evaluate(test_data)

    tf.saved_model.save(network,'D:\\code\\PYTHON\\gesture_recognition\\model\\')

    print("保存模型成功")

    # Convert Keras model to ConcreteFunction

    full_model = tf.function(lambda x: network(x))

    full_model = full_model.get_concrete_function(

    tf.TensorSpec(network.inputs[0].shape, network.inputs[0].dtype))

    # Get frozen ConcreteFunction

    frozen_func = convert_variables_to_constants_v2(full_model)

    frozen_func.graph.as_graph_def()

    layers = [op.name for op in frozen_func.graph.get_operations()]

    print("-" * 50)

    print("Frozen model layers: ")

    for layer in layers:

        print(layer)

    print("-" * 50)

    print("Frozen model inputs: ")

    print(frozen_func.inputs)

    print("Frozen model outputs: ")

    print(frozen_func.outputs)

    # Save frozen graph from frozen ConcreteFunction to hard drive

    tf.io.write_graph(graph_or_graph_def=frozen_func.graph,

            logdir="D:\\code\\PYTHON\\gesture_recognition\\model\\frozen_model\\",

            name="frozen_graph.pb",

            as_text=False)

    print("模型转换完成,训练结束")

if  __name__ == "__main__":

    print(tf.__version__)

    train_path = 'D:\\code\\PYTHON\\gesture_recognition\\Dataset'

    test_path = 'D:\\code\\PYTHON\\gesture_recognition\\testdata'

    image_paths,image_labels,_ = read_data(train_path)

    train_data = creat_dataset(image_paths,image_labels,16)

    image_paths,image_labels,_ = read_data(test_path)

    test_data = creat_dataset(image_paths,image_labels,16)

    train_model(train_data,test_data)

OpenCV加载模型,实时检测

这里为了简化检测使用了ROI。

import cv2

from cv2 import dnn

import numpy as np

print(cv2.__version__)

class_name = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

net = dnn.readNetFromTensorflow('D:\\code\\PYTHON\\gesture_recognition\\model\\frozen_model\\frozen_graph.pb')

cap = cv2.VideoCapture(0)

i = 0

while True:

    _,frame= cap.read()

    src_image = frame

    cv2.rectangle(src_image, (300, 100),(600, 400), (0, 255, 0), 1, 4)

    frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)

    pic = frame[100:400,300:600]

    cv2.imshow("pic1", pic)

    # print(pic.shape)

    pic = cv2.resize(pic,(100,100))

    blob = cv2.dnn.blobFromImage(pic,   

                            scalefactor=1.0/225.,

                            size=(100, 100),

                            mean=(0, 0, 0),

                            swapRB=False,

                            crop=False)

    # blob = np.transpose(blob, (0,2,3,1))                       

    net.setInput(blob)

    out = net.forward()

    out = out.flatten()

    classId = np.argmax(out)

    # print("classId",classId)

    print("预测结果为:",class_name[classId])

    src_image = cv2.putText(src_image,str(classId),(300,100), cv2.FONT_HERSHEY_SIMPLEX, 2,(0,0,255),2,4)

    # cv.putText(img, text, org, fontFace, fontScale, fontcolor, thickness, lineType)

    cv2.imshow("pic",src_image)

    if cv2.waitKey(10) == ord('0'):

        break

小结

这里本质上还是一个图像分类任务。而且,样本数量较少。优化的时候需要做数据增强,还需要防止过拟合。

更多学习课程以及资料 加Q群313074041领取

你可能感兴趣的:(TensorFlow2.X结合OpenCV = 手势识别)